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Abstract. A multiagent fusion search is presented for the graph coloring 
problem. In this method, each of agents performs the fusion search, involving a 
local search working in a primary exploitation role and a recombination search 
in a navigation role, with extremely limited memory and interacts with others 
through a decentralized protocol, thus agents are able to explore in parallel as 
well as to achieve a collective performance. As the knowledge components 
implemented with available structural information and in formalized forms, the 
Quasi-Tabu local search and grouping-based recombination rules are especially 
useful in addressing neutrality and ruggedness of the problem landscape. The 
new method has been tested on some hard benchmark graphs, and has been 
shown competitive in comparison with several existing algorithms. In addition, 
the method provides new lower bound solutions when applied to two large 
graphs. Some search characteristics of the proposed method are also discussed. 
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1.  Introduction 

Let G=(V, E) be an undirected graph, where V is a set of vertices and E is a set of 
edges, the graph coloring problem (GCP) is to partition V into K color classes, where 
each is a subset of V labeled with same color. For a proper coloring, each color class 
forms an independent set, which has no adjacent vertices. GCP is one of the most 
notorious models in graph theory: to compute the exact χ  of an arbitrary graph 
requires the time O(2.4422|V|) [21], and to color a graph with 32 1χχ  + ⋅ −  colors is 
still NP-hard [44], where χ  is the chromatic number. It also has various applications, 
such as timetabling [22], register allocation [62], and some others [4, 32]. 

The landscape paradigm has been used for search in general [58]. Formally, global 
structural information of the optimization task is represented as a landscape [58] 
containing two essential ingredients, i.e., the representation space SR and the cost 
function ( )f s

�
. Each state s ∈

�
SR is associated with a potential solution of the task. The 

function ( )f s
�

, which is to be minimized, is used for measuring the quality of each s
�

. 
The rationale of problem solving is then to find the state(s) with better quality by 
moving in the landscape with the search strategies utilizing structural information. 

The GCP landscape can be studied from a point of view on its geometric properties 
[58] under specified neighborhood structure(s), focusing on the ruggedness, i.e., the 
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distribution of local minima, and the neutrality, i.e., the existence of plateaus, where 
each plateau is a cluster of the neighboring states in the same quality. The strategies 
based on local structural information may be strongly fooled by local minima [10]. 
For GCP, the existence of giant plateaus has been shown [52]. The neutrality becomes 
significant when some benches tend to be very large [26], as studied in Satisfiability 
Problem [60], where each bench is a plateau but not a local minimum.  

Local search (LS) [30, 60, 64], which improves each incumbent state by 
neighborhood moves, has been applied to solve various problems successfully. A 
search strategy is defined as stable if it only allows the moves from one state to 
another with f∆ ≤ 0. Both the greedy ( f∆ <0) and plateau moves ( f∆ ≡ 0) are stable. 
Each stable LS strategy is stuck into the local minimum that it first encounters. Vertex 
Descent strategy [34] is a simple example of a stable LS strategy.  

Noise strategies [61], which are not stable, allow the LS to make occasional uphill 
moves ( f∆ >0) to explore a rugged landscape. Typical examples include Random 
Walk [11, 47], Tabu Search [38], Simulated Annealing [41], etc. Noises may turn an 
incomplete LS strategy into probabilistically approximately complete (PAC) [39] 
which achieves an optimum state with a probability one as the run-time approaches 
infinity. However, for searching efficiently under a reasonable cutoff time, a strategy 
is preferable to exploit problem structural information rather than to perturb blindly. 

Recombination search (XS), which generates a state by combining the positive 
clues from two source states, utilizes the difference between two source states and 
leads to an adaptive leaping [51]. The Graph-Adapted Recombination [24] was 
proposed by hybridizing averaging [60] with min-conflicts. For purpose of addressing 
permutation symmetry [34, 70], grouping-based XS methods [23], such as Greedy 
Partition Crossover [29], Union of Independent Sets [19], etc [22], were proposed. 

Fusion search (FS), a concept borrowed from Multi-Step Crossover Fusion [57], is 
defined as a chained combination between an XS and an LS. Although FS has the 
same interface as XS, the two components in FS have different search roles, where 
the XS finds a promising state as an incumbent state of the LS, while the LS locally 
improves this state. The idea of FS has been used in practice [24, 29, 34, 60]. 

Various metaheuristic frameworks have been applied in solving GCP, which use 
LS, XS, or even FS as their search components. The examples include Ant Systems 
[9], Adaptive Memory [31], Scatter Search [37], Immune Algorithms [16], Genetic 
Algorithms [3, 19, 24, 34, 54], etc. In a framework, it is important to manage the 
source information efficiently for its search components by facilitating the emergence 
of the positive clues as well as maintaining the diversity of information. 

Autonomy oriented computing [48] stresses modeling the flexible autonomy of 
entities and the self-organization of them for a specific goal. It is possible to preserve 
the diversity of the positive clues in the system [15] with a local diffusion effect [68], 
especially when each entity possesses its private memory [69]. Moreover, allowing 
agents to use memorized information to adjust their behaviors enable us to study more 
intelligent agents [46]. Specifically, the compact multiagent optimization framework 
[67], which supports the cooperative search by multiple compact agents, has been 
applied in solving hard computational problems, such as Numerical Optimization 
Problem [67] and Traveling Salesman Problem [68]. As a simple multiagent system 
[63], it may have the potentials of parallelism, robustness, and scalability.  



In this paper, a multiagent fusion search (MAFS) for GCP is presented. In Section 
2, a multiagent optimization framework in general is described to support the 
cooperative search by the multiple agents under the law of socially biased individual 
learning (SBIL) [28, 69]. In Section 3, MAFS is realized in a simplified way of the 
framework, where MAFS not only supports the fusion search for each agent based on 
extremely limited declarative knowledge, but also works in a decentralized way. In 
Section 4, the knowledge components of MAFS are implemented to address neutrality 
and ruggedness of the GCP landscape by utilizing available structural information. In 
Section 5, the characteristics of MAFS are studied by performing experiments on 
some hard graphs [24, 42]. Finally, this paper is concluded in Section 6. 

2.  Multiagent Optimization Framework 

In order to achieve the goal of finding solution(s) with at least reasonable quality, the 
multiagent optimization framework is organized with autonomous entities [49, 69] 
that self-organize by manipulating certain knowledge components which are realized 
according the internal representation (IR) of task and related world knowledge [55]. 

The framework consists of NP active entities, called compact agents, and a daemon 
entity, called environment (ENV) [66]. For simplicity, the agents are homogenous in 
the sense that they have the same organization structure. Each agent has an ability to 
generate new states in SR by manipulating available knowledge based on simple rules 
[69]. Moreover, agents achieve a collective performance through interacting with 
each other according to the interaction protocol (IP) under the support of ENV. 

2.1 Basic Concepts 

The internal representation (IR) encapsulates the primary knowledge related to the 
optimization task, which contains global structural information, i.e., the landscape 
[58], and related local structural information. Using the landscape is quite general in 
solving hard computational problems [58]. Local structural information may reduce 
the local computation efforts and may lead the search into the promising directions.  

The general problem solving capability emerges from an interaction of declarative 
and procedural knowledge [1, 55]. Declarative knowledge is represented in symbol 
structures called chunks, and procedural knowledge is represented in elementary 
information processes called rules. All required knowledge elements are instantiated 
according to the IR and related world knowledge, where only the knowledge elements 
using local structural information are regarded to be strongly problem-dependent. 

Each chunk is a certain declarative data structure containing a meshed set of 
patterns [20, 35], and the content of a chunk is designated by its name. Each rule is 
represented as 

I_NAME
I_KEYR

 
[68]. The subscript I_KEY designates a high-level interface 

used for handling with specific input/output parameters, where each parameter is 
either a knowledge element or a simple data type, and the superscript I_NAME 
designates the low-level realization. Each knowledge element may have specific 
setting parameters, where the value of each parameter can be tuned before a run. 



2.2 Compact Agent 

A compact agent is a socially situated autonomous entity [49, 69] capable of making 
decisions for itself which is subject to limitations of available knowledge.  

Each agent has two declarative knowledge sources. Firstly, it possesses a long-term 
memory called MA for supporting individual learning. Moreover, at least one of the 
chunks in MA is publicly accessed by the external world [49]. Secondly, it refers to an 
equivalent social memory (MSE), which is owned by ENV and contains the chunks for 
achieving socially biased learning [25, 28]. Moreover, the agent possesses a private 
buffer memory called MG for temporarily holding the newly generated chunks. 

Each memory is defined by the chunks it possesses, where each chunk aggregates 
certain particularities of the landscape. Moreover, each chunk in memory is updated 
[35] by its owner only. Typical examples of a chunk in a memory include a state in 
SR, a state set [29, 68], or a special data structure, such as an ensemble of independent 
sets [31], a pheromone matrix [7], a state in priority space [43], etc.  

The search capability in the landscape is achieved by the generate-and-test rule 
(RGT) [18, 69], which contains a generating part (RG), a testing part (RT), and a 
solution-extracting part (RS) [68]. The law of behavior is socially biased individual 
learning (SBIL) [25, 28, 69], as a fast-and-frugal heuristic in bounded rationality [33], 
which is adopted by many species for adapting in the real world with limited time and 
resource and is a mix of reinforced practice of individual experience and social 
influence. First, according to the current chunks in MA and MSE, the RG generates new 
chunks and stores them into MG immediately. Afterwards, based on the chunks in MG, 
the RT updates MA, and the RS extracts inclusive valid states and exports them to ENV, 
respectively. The RS has no influence on the solving process and is thus realized in the 
simplest way. If without loss of generality, the RT only produces reflex behaviors that 
may determine certain nontrivial properties of the chunk(s) in MA [67]. 

2.3 Environment 

The environment (ENV) [48] is a daemon entity providing background supports for 
the cooperation among the agents by encapsulating available resources, even may 
include the physical infrastructure [66], if necessarily. Here ENV plays two roles. 

First, it holds a solution-depositing module, which is simply realized by storing the 
best-quality state of all the states that are exported by the RS of all agents. 

Secondly, it manages resources and services [66] for all the agents. Such as, a) it 
constructs the initial contents of chunks in MA of all the agents with the memory-
constructing rule (RINI); and b) it organizes the corresponding MSE for all agents based 
on the available declarative knowledge through the interaction protocol (IP). 

2.4 Working Process 

The framework is initialized at t=0. All the NP agents are constructed, and the RINI rule 
is executed to construct the chunks in MA for all agents. Then states are extracted from 
such chunks by RS and are submitted to the solution-depositing module in ENV. Then 
all the knowledge components, including the IP in ENV, are instantiated. 



The framework runs in iterative learning cycles. By running in a Markov chain, the 
system behavior in the tth ( [1, ]MAXt T∈

ℤ
) cycle only depends on the system status in 

the (t-1)th cycle, where TMAX is the maximal number of cycles. The learning process is 
terminated as if the proper solution is found, or if the condition t ≡ TMAX is satisfied.  

Moreover, each cycle contains two sequential clock steps: the C_RUN step and the 
C_POST step. The RG rule is executed at the C_RUN step, and the RT and RS rules are 
executed at the C_POST step. The using of the two synchronizing steps simply 
ensures the environment being unchanged during a generating process for all agents. 

At each cycle (t>0), all the agents are activated in turn. The socially biased learning 
process by the ith activated agent in the tth cycle can be represented as: 

( 1)
( )(C_POST)( ) ( ) ( )

( ) ( ) ( )(C_RUN)

(C_POST)

,  
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+→→ 
→ →

�
 

(1) 

where each ( )
( )

t
SE iM is organized by the IP in ENV. Moreover, the chunks in 

( )
( )

t
G iM  will 

be cleared at the end of such a learning process. 
At the end of each cycle, if necessarily, the information related to ENV is updated. 

2.5 Summary 

In summary, the framework is represented as a tuple, i.e., <IR, TMAX, NP, MA, MG, MSE, 
RG, RT, RS, RINI, IP>, where both TMAX and NP are simple parameters. 

Given a known IR, the three types of memories, including MA, MG, and MSE, can be 
specified in advance according to the names of chunks that each memory possesses, 
although the contents of chunks have to be varied during the runtime. 

The other knowledge components can be specified rather independently through 
using different memories. For each agent, RINI simply uses MA; RS only depends on 
MG; RT works on both MA and MG; and RG employs all the three available memories.  

For ENV, IP accesses the chunks in MA shared by all agents, and then organizes 
MSE for every agent. Hence, IP may be realized in a quite sophisticated way, if 
necessarily. However, simple implementations are often considered, if possible. 

The number of setting parameters in such a framework is not necessarily large 
since many of the knowledge components may have none or few parameters. In 
addition, in order to focus our studies on certain interesting components, we may fix 
many components in the simple forms. Those components with no variety, e.g., the 
solution-depositing module in ENV, are out of our further concentration.  

3.  Multiagent Fusion Search (MAFS) 

The MAFS is an optimization system realized by using simple forms of knowledge 
components in the multiagent framework. It has three main features. 

Firstly, memories are specified with extremely limited declarative chunks. MA and 
MG both contain one state in SR, which are called ( )t

As
�

 and ( )t
Gs
�

, respectively, where 
( )t
As
�

 is publicly accessed by ENV since it is the only one chunk in MA. MSE holds an 
equivalent state set called( )t

SEX , which refers to a set of states. 



Secondly, a decentralized IP is considered for supporting the interactions between 
the agents. This is important, as in the real world, animals may observe neighbors for 
achieving socially biased learning [25, 28], which leads to a cumulative evolution of 
knowledge that no single individual could invent on its own [2]. This IP employs a 
directed network topology model (IPNET). Each agent is associated with one node in 
the network, and the node stores a reference of the publicly opened knowledge in MA 
of the agent. A directed connection from the node A to B indicates that the agent B 
can use the referenced knowledge of the node A. For each agent, 

( )t
SEX  contains all the 

referenced chunks of the nodes connected to the node associated with it, which is a 
subset of ( )t

SX ={ ( )
( )
t

A is
�

| [1, ]Pi N∈
ℤ

}  and may be different for different agents. 
Thirdly, in order to formalize some well-studied LS and XS strategies and to study 

certain novel strategies, RG is realized in a tuple <RSP, RFS>, where RFS=RXS+RLS is the 
fusion search (FS), and the state-picking rule (RSP) serves as a simple knowledge lens 
[20] to choose one state from 

( )t
SEX  as the input information of RFS. The chaining 

operator (‘+’) indicates that the recombination search rule (RXS) and the local search 
rule (RLS) are chained, i.e., the output of the former rule RXS is exactly the input of the 
latter rule RLS. The fusion is a concept borrowed from Multi-Step Crossover Fusion 
[57], which is actually an XS strategy designed with an extension of a LS strategy. 
Moreover, RFS may be understood as a special RXS in consideration of the same 
input/output parameters of them, which possesses two components in different search 
roles: the RLS rule playing a primary exploitation role and the RXS rule working in a 
navigation role to find a promising state as the incumbent state for the RLS.  

To provide a straightforward understanding, Figure 1 shows the pseudo code of 
MAFS from the viewpoint of a population-based optimization algorithm, where all 
the knowledge publicly accessed by the IPNET in ENV, i.e., ( )t

SX ={ ( )
( )
t

A is
�

| [1, ]Pi N∈
ℤ

}, 
corresponds to a virtual population of states, although 

( )
( )
t

A is
�

 is actually located in MA 
of the ith agent. For each agent, ( )t

SX  is at least transparent to it, since it simply refers 
to ( )t

SEX , which is organized by the IPNET model. Moreover, because each agent shares 
all its declarative knowledge in MA with the external world, (0)

SX  can represent the 
knowledge to be constructed by RINI into the memory MA of all agents. 

At the C_RUN step, the RG rule of each agent works in the following steps: 1) two 
states ( )t

bases
�

 and 
( )t
refs
�

, are chosen from the input information, where 
( )t
bases
�

= ( )t
As
�

 and 
( )t
refs
�

 is a state picked by the RSP from 
( )t
SEX ; b) the RXS part of RFS generates one child 

state called ( )t
incs
�

 by using both ( )t
bases
�

 and 
( )t
refs
�

 as the parent states; and c) the RLS part 
of RFS further improves ( )t

incs
�

 and finally stores it as 
( )t
Gs
�

 in MG. 
At the C_RUN step, The RT rule of each agent replaces 

( )t
As
�

 by 
( )t
Gs
�

 according to a 
specific criterion. The RS rule is not mentioned in Figure 1 since it simply exports 

( )t
Gs
�

 to the solution-depositing module in ENV. 
In MAFS, the two parent states of RFS serve different roles, especially in 

consideration of the multiple cycles in a run. Under the law of SBIL, the parent 
( )t
bases
�

 

always uses the 
( )t
As
�

 in MA of each agent as its input and the state generated by RFS is 
always the candidate of 

( 1)t
As +� , while the parent 

( )t
refs
�

 uses a state from ( )t
SEX  as its input 

in a stochastic way. Hence, RFS may be interpreted from a viewpoint of a guided local 
search process, where 

( )t
As
�

 serves as an incumbent state to be improved and the state 
which is picked from 

( )t
SEX  serves as the guiding information. 



In the multiagent framework, since each agent possesses its own long-term 
declarative memory, it is possible to preserve the diversity of positive clues in the 
system. By utilizing their individual experiences, the agents are able to explore in 
parallel, which may significantly increase the probability of escaping from local 
minima in the rugged GCP landscape. With RXS, the agents are facilitated by the 
social influence of IPNET, thus achieve a collective performance searching faster than 
they work independently. In addition, usage of RLS in the FS is important in obtaining 
good states, especially when some benches in the GCP landscape are huge.  

 
Data: IR(G, K)                       /* graph: G=(V, E), color number: K */ 
% NP, TMAX                                 /* simple setting parameters */ 
% RSP, RXS, RLS, RT, RINI, IPNET       /* knowledge elements: instantiated by IR */ 
Result: 

*s
�

(the best state found)  /* held by solution-depositing module in ENV */ 
begin 
│  t=0                              /* initialization stage */ 
│  (0)

SX =RINI(IR)    /*  
( )t
SX ={ ( )

( )
t

A is
�

| [1, ]Pi N∈
ℤ

} , ( )
( )
t

A is
�

belongs to the ith agent */ 
│  *s

�
=best(IR, (0)

SX )          /*  best(IR, (0)
SX ): returns the best state in 

(0)
SX */ 

│  while (t<TMAX and *( )f s
�

>0) do                   /* termination criteria */ 
│  │  t=t+1                                       /* iterative cycles */ 
│  │  for i=1 to NP, do                /* C_RUN step, for the ith agent */ 
│  │  │  ( )

( )
t

SE iX = IPNET(IR, ( )t
SX )             /* organizes ( )

( )
t

SE iX  by IPNET */ 
│  │  │  ( )t

bases
�

= ( )
( )
t

A is
�

, ( )t
refs
�

=RSP(IR, ( )
( )

t
SE iX )       /* filters input information */ 

│  │  │  ( )t
incs
�

=RXS(IR, ( )t
bases
�

, ( )t
refs
�

)         /* performs recombination search */ 
│  │  └  ( )

( )
t

G is
�

=RLS(IR, ( )t
incs
�

)      /* refines ( )t
incs
�

 and stores it as ( )
( )
t

G is
�

in MG */ 
│  │  for i=1 to NP, do                 /*  C_POST step, for the ith agent */ 
│  │  │  ( 1)

( )
t

A is +� =RT(IR, ( )
( )
t

A is
�

, ( )
( )
t

G is
�

)        /* determines which state is 
( 1)
( )
t

A is +�
 */ 

│  └  └  if ( ( ) *
( )( ) ( )t

G if s f s<
� �

) then *s
�

= ( )
( )
t

G is
�

 /* stores ( )
( )
t

G is
�

as 
*s
�

 if it is better */ 
end 

Figure 1. Pseudo code of MAFS from the viewpoint of a population-based algorithm. 

In summary, MAFS can be represented as a tuple, i.e., <IR, TMAX, NP, RSP, RXS+RLS, 
RT, RINI, IPNET>. All its components can be realized in a rather decoupled way since 
the memory specification is known. Moreover, many of its components may be not 
strongly problem-dependent if they do not use any local structural information. For 
example, the IPNET model may not utilize any structural information, or both RSP and 
RT are suggested to only use (or even not use) the global structural information of IR.  

4.  The Implementation for GCP 

The implementation of the knowledge components in MAFS is especially focused 
on RXS and RLS, because they play the major roles in tacking with neutrality and 
ruggedness of the GCP landscape in the multiple cycles of a run, although RINI, which 
constructs the totally NP states at t=0, may also utilize local structural information to 
facilitate the search process through providing a good starting status, if necessarily. 



Formalized forms are used to realize the rules of RLS and RXS, which is important 
not only in stressing the difference between various realizations, but also in leaving 
certain flexibility to develop novel variants locally. 

4.1 Internal Representation (IR) 

The primary input information of the graph coloring problem (GCP) contains both the 
graph, i.e., G=(V, E), and the number of available colors, i.e., K.  

Normally, a preliminary data structure, i.e., the string-based assignment ( s
⌢

) [23], 
is considered. Each s

⌢
 has |V| elements, where each element corresponds to a vertex 

and can be assigned a color value. An assigned vertex is called critical [30] if its 
violation number (vio), i.e., the number of vertices within the same color class that are 
adjacent to the vertex, is larger than 0. The number of assigned vertices is called VA. A 
configuration is then defined as a complete assignment with VA ≡ |V|. 

For the GCP landscape, each configuration is a state s
�

∈ SR, where SR is an integer 
representation space with s(j) [1, ]K∈

ℤ
 for [1,| |]j V∀ ∈

ℤ
, s(j) is the color of the jth vertex 

of s
�

. The cost function is 
| |

1
( ) ( , ) 2V

j
f s vio s j==∑
� �

, where ( , )vio s j
�

≥ 0 is the violation 
number of the jth vertex. Then an optimal solution is a state 

*s
�

 that satisfies *( ) 0f s ≡
�

, 
which means all its vertices are not assigned in the critical status. 

The local structural information relies on the adjacency matrix. Any of edge in E 
which has two adjacent vertices ja and jb are described with the TRUE values at the 
two corresponding entries (ja, jb) and (jb, ja) in the Boolean |V|× |V| matrix. 

An assignment s
⌢

 can be simply constructed with some heuristics which utilize the 
local structural information from the adjacency matrix involving the distribution of 
node degrees [65], most-constrained vertices [45], etc. Examples of these heuristics 
include DSatur [8], XRLF [41], lmXRLF [45], etc. 

Moreover, each assignment s
⌢

 with VA<|V| can be constructed into a state s
�

∈ SR  

by a vertices-assigning rule (RVA). Each unassigned vertex is assigned a randomly 
chosen color [29] by the randomizing RVA rule ( R

VAR ) and a color with the minimal 
violation number by the min-conflicts RVA rule ( MC

VAR ) [24, 37]. 

4.2 Local Search 

A local search strategy (LS) tries to achieve improvement on an incumbent state with 
certain neighborhood moves. For GCP, as one of the representative models of 
Constraint Satisfaction Problems [47], LS strategies based on 1-moves [30] are often 
considered, since 1-moves can be significantly speeded up by associating each state s

�
 

with a violation table [47]. Here a 1-move changes the color of a single vertex in the 
incumbent state. In addition, 1-moves possess the connectivity property [56], i.e., there 
exists a finite sequence of such moves to achieve the optimum solution from any valid 
state. Many sophisticated moves, such as Kempe chain [41], Shuffle [27], etc., can be 
represented by a finite sequence of 1-moves. 

For GCP, the violation table is simplified as a |V|× K violation matrix Vγ , in which 
each entry ( , )V j kγ ≥ 0 ( [1,| |]j V∈

ℤ
, [1, ]k K∈

ℤ
) is the number of vertices within the 



kth color class of s
�

 adjacent to the jth vertex. The initialization of such a matrix 
takes the time complexity (| | )O V K⋅ . Each delta value f∆ = ( )( , ) ( , )V j V xj s j kγ γ−  can 
be obtained in constant time before the color of the jth vertex changes from s(j) to kx. If 
a 1-move is actually performed, both columns s(j) and kx of the matrix are updated, 
where the updating takes (| |)O V . The matrix Vγ  is not the same as the matrix ∆ [24], 
in which entry ( , )j k∆  represents the effect of changing the color of node j to the color 
k, where the initialization takes 

2(| | )O V K⋅ for and each 1-move takes (| | )O V K⋅ . 
For the purpose of representing various RLS strategies in formalized forms, three 

hierarchical levels are used, i.e., a) the local level (RLSL), b) the round level (RLSR), and 
c) the meta level, if necessarily. A basic RLS strategy can be achieved by a tuple <RLSL, 
RLSR>. A meta RLS strategy can then be achieved by chaining certain RLS strategies 
being on the same incumbent state. For a basic RLS, it is stable if its RLSL only allows 
stable moves. For a meta RLS, it is stable if all its component RLS strategies are stable. 

For convenience, the best state found so far by the RLS rule is called *s
�

, which is 
recorded only when a LS strategy is not stable. 

The local level. The RLSL decides a destination color for 1-move at each vertex. Here a 
color list ( Γ ) contains certain colors. For the jth vertex, the color is randomly 
selected from a candidate color list corresponding to the input ( )jΓ with the current 
color s(j) excluded. The vertex is defined as fixed if the candidate color list is empty. 

With the violation matrix Vγ , one simple way is to define an input color list  is by 
utilizing ( , )V j kγ  values. For example, the least-violation ( )jΓ , i.e., ( )LV jΓ , contains 
all colors with the minimum violation value of the jth vertex. 

The 1-moves can be further guided by using a |V|× K tabu matrix [38]. If a 1-move 
leading to a state no better than *s

�
 is performed, then its original color is declared as 

tabu for a certain number of such 1-moves (called tabu tenure). The tabu tenure is 
calculated as ( ) CU A Vα+ ⋅

ℤ
[29], where U

ℤ
(A)  returns an integer value selected in [0, 

A-1]
ℤ

 at random and VC is the number of the critical vertices in the current s
�

. The 
default values of A and α  are 10 and 0.6, respectively [29]. Here the second part, i.e., 

CVα ⋅ , provides a self-adaptive scheduled neighborhood selection; and the first part, 
i.e., U

ℤ
(A),  introduces certain fluctuation into such scheduled process. 

For the input ( )jΓ , the random walk RLSL ( RW
LSLR ) uses the list of all possible colors; 

the least RLSL ( L
LSLR ) uses the list ( )LV jΓ ; and the Quasi-Tabu RLSL (

QT

LSLR ) uses the list 

( )LV jΓ ∩ ( )NT jΓ , where the non-Tabu ( )jΓ ( ( )NT jΓ ) is defined as all the colors that are 
not in tabu status of the jth vertex. Both L

LSLR  and 
QT

LSLR  only allow stable moves.  

The round level. The RLSR executes RLSL on selected vertices in a specified order 
during a round. The minimal-critical RLSR ( MC

LSRR ) selects a 1-move with the maximum 
deduction of ( )f s

�
 by examining all critical vertices [29]. The systematic RLSR ( SYS

LSRR ) 
[34] takes each unfixed vertex in turn, and performs each 1-move based on a specified 
RLSL rule. The probabilitistic RLSR ( P

LSRR ) takes each vertex in turn, and then performs 
the 1-move on the vertex selected with a probability of VRW/|V| ( (0,| |]RWV V∈

ℝ
). 

The meta level. This level manages one or more RLS strategies into a meta LS strategy. 
One simple way is to combine different RLS strategies by using the chaining operator. 



In addition, the local cutoff criterion (RCCL) is often considered, where one RLS rule is 
executed in multiple rounds. Generally, the execution of RCCL is always terminated if 
all vertices are fixed during a round. Specifically, the deterministic RCCL ( D

CCLR ) also 
terminates the search in exactly LC rounds [29]; while the improvement-based RCCL 
( I

CCLR ) also terminates if no further improvement on the *s
�

 occurs for LI rounds [11, 
34]. In the case that large plateaus exist in the GCP landscape, it is difficult in 
assuring if a local minimum is actually reached even as LC>1 or LI>1. 

The Instances. The random walk strategy ( RW
LSR ) can be represented by a tuple 

< RW
LSLR , P

LSRR >. The Vertex Descent strategy (VDS) [34] can be represented as <<L
LSLR , 

SYS
LSRR >, I

CCLR >. The Quasi-Tabu strategy ( QT

LSR ) is defined as << QT

LSLR , SYS
LSRR >, I

CCLR >.  
As an intermediate version between VDS [34] and Tabucol [38], QT

LSR  is not 
completely new since it inherits the traits from both of them. However, as an essential 
difference from Tabucol, 

QT

LSR  is a stable strategy, which may be terminated early if 
all its vertices are fixed during a round due to the restriction of the tabu matrix. The 
tabu matrix is updated only while 1-move is searching in a plateau. As same as VDS, 
it cannot escape from the local minimum it first encounters. But it may be more 
efficient in finding the exits from benches by utilizing the tabu matrix. 

4.3 Recombination Search 

The grouping-based RXS (RXS:G) is a RXS rule based on the grouping method [19, 23, 
29, 37]. Here a group set (H) is defined as a set of K groups, where each group 
contains a set of vertices. By using groups, the permutation symmetry [34, 70], which 
has massive redundancy (≡ K!) for labeling the colors, can be broken naturally. 

The numbers of the total and the distinct vertices in an H are called VHT and VHD, 
respectively. Then an H with VHT ≡ VHD is defined as a simplex H, where each of its 
vertices only exists in one group. Each assignment, and hence each configuration 
state, has an equivalent simplex H by simply taking each color class as a group. A 
stable H is defined as an H that each of its groups is an independent set (IS).  

For the rugged GCP landscape, it has been suggested that good states may contain 
a fairly robust ‘core’ [34]. The exact core, or called backbone [70], may not exist in a 
meaningful size due to the existence of giant plateaus which contain the majority of 
solutions [52]. The “big valley” hypothesis [5, 57, 70], which has been validated in 
many hard computational problems, suggests that better local minima tend to have 
smaller distance from the closest optimum by sharing common partial structures. For 
GCP, such partial structures may be associated with groups in a certain way. 

The concept of complex core (c-core) is introduced here: each H has one exactly c-
core, i.e., a stable group set defined as a subset of the H where all its critical vertices 
are excluded. For each H, its c-core size (VCC) is the VHD of its c-core and is not larger 
than the VHD of the H. The c-core of each stable H is exactly the stable H itself. 

In order to navigate in the rugged landscape, the basic principle of realizing a RXS:G 
rule is to combine the positive partial structures associated with the parent states as 
well as to allow the adaptive leaps into new local valleys. Formally, there is 



RXS:G=<RGPP, RGGP, RGVR, RVA>, which contains four parts working in sequential steps. 
First, two source states

 

( )t
bases
�

 and 
( )t
refs
�

 
are translated into two equivalent group sets 

Hbase and Href, respectively. The three early parts, i.e., preprocessing (RGPP), group-
picking (RGGP), and vertices-removing (RGVR), which generates a simplex H called Hinc 
by operating on the two parent group sets, i.e., Hbase and Href. Afterwards, the Hinc is 
translated back into an equivalent assignment. In the last step, the assignment is 
constructed into a state 

( )t
incs
�

, by a vertices-assigning (RVA) rule (see Section 4.1). 

Preprocessing. The RGPP preprocesses each input H of Hbase and Href into a group set 
containing suitable positive clues. The equivalent RGPP ( E

GPPR ) returns the original 
input H [23, 29]. The IS RGPP ( IS

GPPR ) reduces each group in the H into an independent 
set (IS) by removing each critical vertex with a maximum number of neighbors in the 
group [19, 37]. The MIS RGPP ( MIS

GPPR ) further expands each IS into a maximum IS [21] 
by inserting each of the vertices with a minimal number of neighbors in the IS [31]. 

Either IS
GPPR  or 

MIS
GPPR  transforms each input H into a stable one. Moreover, the H 

outputted by IS
GPPR  is a subset of the input H and a subset of the H outputted by MIS

GPPR . 
The VCC size of the group set outputted by 

IS
GPPR  is not smaller than that by 

E
GPPR  

since certain vertices in the input H may no longer be critical as other critical vertices 
are removed, and the VCC size by MIS

GPPR  is obviously not smaller than that by 
IS

GPPR . 

Group-Picking. The RGGP generates the group set HM by picking out K groups from 
the both parent group sets, i.e., Hbase and Href. The alternate-greedy RGGP ( AG

GGPR ) for 
picking out each HM(k) is achieved by two steps. The first step is to select one parent 
as the target, called HT. Here it is achieved by selecting one of them alternately [29]. 
The second step is to pick out a group in HT as the HM(k). Here the element HT(x) with 
maximal size of (1) ( 1) ( )| ( ... ) |M M k T xH H H−∪ ∪ ∪  is picked out as the HM(k) [29].  

AG
GGPR  aims at achieving a HM with two features: a) the HM has an enough distance 

from the both parent group sets Hbase and Href, thus it allows adaptive leaps into new 
local valleys, which has been used by algorithms [51] in exploring the “big valley” [5, 
57, 70] in a rugged landscape; and b) the HM has a large VHD size. If both parents are 
stable group sets, HM is also a stable H, thus the VCC size of HM is also large. 

Vertices-Removing. The RGVR achieves a simplex H, called Hinc, by removing all 
redundant vertices in the HM, where Hinc is a subset of HM and has a same VHD size as 
HM. For each vertex existing in multiple groups, the first-keeping RGVR ( KF

GVRR ) only 
keeps the vertex in the HM(k) with the smallest k value [29]; while the random-keeping 
RGVR ( KR

GVRR ) keeps the vertex in a group selected at random. 
It is rational that Hinc has a large VCC size, thus Hinc will benefit given HM has a 

large VCC size. If HM is a stable H, then every potential Hinc has the same VCC size. 

The Instances. The grouping-based method itself and its parts have been studied in 
recent years, especially the greedy partition crossover (GPX) [29] and its variants. For 
example, GPX can be represented as <E

GPPR , 
AG

GGPR , 
KF

GVRR , 
R

VAR >. Moreover, MIS
GPPR  has 

been applied to the independent sets in the adaptive memory [31], and both 
IS

GPPR  and 

MC
VAR  have been considered in another generalized version [37]. 



The standard version of grouping-based recombination ( :
STD

XS GR ) is defined as < MIS
GPPR , 

AG
GGPR , 

KR
GVRR , 

MC
VAR >, which differs from the previous methods in at least two parts and 

the part KR
GVRR  is a novel one. Together with 

MIS
GPPR , 

AG
GGPR  and 

KR
GVRR  work on stable group 

sets to generate a simplex group set with a large c-core size in an unbiased way. 

4.4 Standard MAFS Version 

Formally, the standard version of MAFS, called #STD, can be represented as a tuple, 
i.e., <IR, TMAX, NP, 

R
SPR , :

STD
XS GR + QT

LSR , 
D

TR , 
DS

INIR , ( , )P LN NG >. Other MAFS versions are 
then defined by applying the corresponding modification(s) to #STD. 

( , )P LN NG  is defined to describe a static IPNET model: each node has NL nodes 
connecting to it, where the NL nodes are randomly selected at t=0 and all the 
connections are directed and static in a run. In the case that NL ≡ NP, because the 
topology is fully-connected, ( , )P LN NG  is equivalent to the centralized memory [68]. 

The randomized RSP rule ( R
SPR ) picks out a state from ( )t

SEX  at random. The directly 
RT rule ( D

TR ) replaces ( )t
As
�

 by 
( )t
Gs
�

 directly, thus the ( )t
As
�

 in MA of an agent is the 
most recently state generated by the agent itself. 

The 
DS

INIR  rule constructs the total NP states by three steps: a) to construct an 
template assignment [29], called Ts

⌢
, corresponding to the first K color classes found 

by Dsatur [8]; b) to generate each s
�

 with 
R

VRR  base on the Ts
⌢

 [29]; and c) to improve 
each generated s

�
 immediately with QT

LSR . 
By default, the parameters are NP=25 and LI=50 for the I

CCLR  of 
QT

LSR , respectively. 
TMAX is fixed as 500. In addition, there is NL ≡ NP for the ( , )P LN NG  by default. 

5.  Experimental Results and Discussions 

The characteristics of MAFS are investigated by the experiments on the hard graphs.  
There are two main indices for measuring the performance of an algorithm. The 

first is the solution quality, which is the probability to find one solution for given K, 
called ps (ps [0,1]∈

ℝ
). The larger is the ps, the better the performance. The ps can be 

estimated with NS/NR, where NS is the number of satisfied trials that achieve proper 
coloring, and NR is the number of trials. All average results are evaluated with the 
satisfied trials. The second index is the computational cost. In the comparison of the 
algorithms across different platforms and reducing unnecessarily impacts caused by 
the low-level details, it is often preferable to use representative operation counts, or 
called run-length, is preferred to be used for reducing unnecessarily impacts caused 
by the low-level details rather than the CPU time, as the first is a more platform-
independent measure of the computational cost of an algorithm [40]. RLS and RXS both 
execute major computations in multiple cycles. In this paper, Tm (×106) is the count of 
1-moves and NX= R PT N⋅  is the count of RXS operations, where TR is the cycles taken 
to reach the last improvement. The smaller are the Tm and NX, the better the 
performance. In solving GCP, the run-length is characterized by Tm because 1-moves 



consume much more computational time than RXS operations, where Tm is huge. 
Therefore, the performance indices can be simplified as a tuple, < ps, Tm>. 

5.1 Basic Performance 

The random graphs with a density d=0.5 is a traditional class of benchmark instances. 
Table 1 lists the mean results of 10 trials by #STD for both the 100-node (gcol01-
gcol20) and the 300-node (gcol21-gcol30) instances, which are available from the 
OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/colourinfo.html). For each 
instance, ps, Tm and TR are reported for the color K. The value K  denotes the smallest 
number of colors needed for which each instance can be colored without a failure. 
The results show that all the 100-node instances can be solved with short TR values. 

Table 1.  Mean results on random graph instances with d=0.5 by #STD of MAFS. 

Graph K ps Tm TR Graph K ps Tm TR Graph K  K ps Tm TR 
gcol01 15 1.00 0.011 0.6 gcol11 15 1.00 0.009 0.1 gcol21 33 32 0.70 3.867 186.6 
gcol02 15 1.00 0.011 0.8 gcol12 15 1.00 0.017 2.1 gcol22 33 33 1.00 2.018 72.0 
gcol03 15 1.00 0.020 2.7 gcol13 15 1.00 0.011 0.1 gcol23 33 32 0.70 2.611 104.7 
gcol04 15 1.00 0.017 1.4 gcol14 15 1.00 0.038 7.8 gcol24 33 32 0.20 3.896 160.5 
gcol05 15 1.00 0.011 0.0 gcol15 15 1.00 0.022 3.6 gcol25 32 32 1.00 3.858 143.7 
gcol06 15 1.00 0.017 2.2 gcol16 15 1.00 0.012 0.4 gcol26 33 32 0.10 1.275 84.0 
gcol07 15 1.00 0.014 0.5 gcol17 15 1.00 0.026 5.2 gcol27 32 32 1.00 3.087 126.5 
gcol08 15 1.00 0.012 0.2 gcol18 15 1.00 0.012 0.5 gcol28 33 32 0.10 4.613 225.0 
gcol09 15 1.00 0.009 0.1 gcol19 15 1.00 0.031 5.3 gcol29 33 32 0.10 2.873 130.0 
gcol10 15 1.00 0.018 2.4 gcol20 14 1.00 0.028 6.6 gcol30 33 33 1.00 2.030 69.7 

Table 2.  Average results on random graphs with d=0.5 by Tabucol [38], GLS [24] and #STD. 

|V| Number of Graphs χɶ  KM from [38] KM from [24] K from [24] KM K  K 

100 20 16 16 15 14.95 15 14.95 14.95 
300 10 35 35 34 33.5 33 32.8 32.2 

Table 2 summarizes the average results reported by Tabucol [38], by the genetic 
algorithm hybridized with a local search (GLS) [24], as well as those obtained by 
#STD, where χɶ  is a probabilistic estimation of the chromatic number of a group of 
graphs [24]. The value KM denotes the smallest number of colors for which all graphs 
of the same |V| can be colored with ps=100%. Both the algorithm from [24] and #STD 
find smaller KM than Tabucol for the 100-node graphs. Moreover, for the 300-node 
graphs, #STD achieves better results than the both previous algorithms [24, 38] for 
both KM and K , while the average K is even smaller than the averageK . 

For further demonstration of the performance of MAFS, totally 20 representative 
challenging instances are selected from a mixed set of both DIMACS [42] and 
COLOR04 (http://mat.gsia.cmu.edu/COLOR04/) graph instances, where C2000.5 is a 
large graph from the clique part of the DIMACS Challenge. Some easy graphs are 
excluded, such as: a) the graphs that can be reduced into trivially [10, 11], such as 



games120, Book (5 graphs), Miles (5 graphs), and MIZ graphs (4 graphs); or b) the 
graphs that can be solved efficiently by simple heuristics including DSatur [8] and 
XRLF [41], such as MYC (5 graphs), REG (14 graphs), CAR, and most Queen 
Graphs, which may due to 1-perfect [13] or the distribution in node degrees [65].   

Table 3.  Results on challenging graph instances by #STD and some existing algorithms. 

Graph |V| d K* K ps Tm TR DS XR TC IG SI MIPS ILS AMA IA ABA 

abb313GPIA 1557 0.04 9 9 1.00 19.3 22.0 11 12     9 11  9 
ash958GPIA 1916 0.01 4 4 1.00 6.35 5.90 6 5     4 6  4 
C2000.5 2000 0.50 162 150 0.60 70.9 410    188 165 162     
DSJC125.5 125 0.50 17 17 1.00 0.29 51.2 21 18  18 17 17 17 17 18 17 
DSJC250.5 250 0.50 28 28 1.00 2.00 110 38 29 28 32 28 28 28 28 28 29 
DSJC500.5 500 0.50 48 48 0.80 7.70 173 67 50 49 57 49 49 50 48  50 
DSJC1000.5 1000 0.50 83 84 0.90 31.8 296 114 86 89 102 89 88 90 84  91 
DSJC1000.9 1000 0.90 224 223 0.40 17.8 285 297 232    228 227 224  229 
DSJR500.1c 500 0.97 85 85 1.00 1.77 8.70 87 91  85 85 85  86  85 
flat300_26_0 300 0.48 26 26 1.00 0.10 20.2 41 33  36 26 26 26 26 27 26 
flat300_28_0 300 0.48 31 31 1.00 2.49 103 41 33 32 35 31 31 31 31 32 31 
flat1000_50_0 1000 0.49 50 50 1.00 0.86 53.5 112 84  50 50 50 88 50  50 
flat1000_60_0 1000 0.49 60 60 0.50 1.97 222 113 87  100 60 60 89 60  60 
flat1000_76_0 1000 0.49 83 83 0.90 27.0 280 114 87 87 102 89 87 89 84  84 
latin_square_10 900 0.76 98 104 0.20 109 235 126 117  105 98 99 103 104  100 
le450_15c 450 0.17 15 15 1.00 0.13 7.10 24 19 16 25 15 15 15 15 15 15 
le450_25c 450 0.17 26 27 1.00 0.52 0.40 29 27 26   26 26 26  26 
qg.order100 10000 0.02 100 100 1.00 0.49 0.00 103 100     100 100   
queen16_16 6320 0.19 17 18 1.00 0.03 0.00 21 17     18 17  18 
school1_nsh 352 0.31 14 14 1.00 0.08 0.20 15 19  14 20 14  14 15 14 

Table 3 summaries the results on the challenging graph instances by #STD of 
MAFS and existing algorithms. For each graph, |V| is the number of vertices, d is the 
density, and K* is the best-known color size. For #STD, NR=10 trials are run, then the 
mean results of ps, Tm, and TR are reported for the K. It also summaries the best color 
sizes achieved by some existing algorithms, including DSatur (DS) [8] tested in [31], 
XRLF (XR) [41] tested in [11], Tabucol (TC) [38] tested in [29], iterated greedy 
algorithm (IG) [14], S-IMPASSE (SI) [53], iterated local search (ILS) [11], minimal-
state processing search (MIPS) [27], adaptive memory algorithm (AMA) [31], immune 
algorithm (IA) [16], and ant-based algorithm (ABA) [9]. Bold face indicates that the 
color size is not worse than K*. It shows that #STD is competitive to the state-of-the-
art algorithms in achieving K*. It is impressive that #STD obtains new K results for 
two large graphs in high densities, i.e., C2000.5 and DSJC1000.9. It also shows that 
qg.order100 can be solved only by the stable LS in the stage of initialization. For 
latin_square_10, MAFS is not very efficient, which may due to the additional 
symmetry that all the vertices are in the same degree. 

For all the following experiments, NR=100 trials are run for each case so as to 
achieve more reliable statistics of the performance indices. In consideration of the 
limited available computational resources, we will focus on a small subset of the 
challenging graph instances, which includes: a) four random graphs, DSJC250.5, 



DSJC500.5, DSJC1000.5, and DSJC1000.9; b) two flat graphs, flat300_28_0 and 
flat1000_76_0; and c) two structural Leighton graphs, le450_15c and le450_25c. 

Table 4.  The mean results achieved by HCA [29] and #STD. 

HCA [29]  #STD 
Graph KS 

LC NR ps Tm TR ps Tm TR rg/p Sp∆ɶ  

DSJC250.5 28 2000 10 0.90 0.49 235 0.90 1.87 102 0.026 -0.0998 
DSJC500.5 48 5600 10 0.50 4.90 865 0.75 9.64 210 0.019 0.0056 
DSJC1000.5 84 16000 5 0.60 20.7 1283 0.94 27.5 271 0.017 0.2357 
flat300_28_0 31 2000 10 0.60 0.64 790 1.00 3.31 123 0.022 0.0086 
flat1000_76_0 83 16000 5 0.80 17.5 1008 0.93 28.5 286 0.017 0.0028 
le450_15c 15 5600 10 0.60 0.19 24 1.00 0.14 7.91 0.172 0.5193 
le450_25c 27 4000 10 1.00 0.09 18 1.00 0.49 0.31 0.003 - 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Run-length distribution (RLD) for #STD on the graphs. 

In Table 4, #STD and the hybrid coloring algorithm (HCA) [29] are compared on 
the KS color series (K=84 for DSJC1000.5 and K=27 for le450_25c). HCA [29] 
maintains a state set supporting a FS, i.e., GPX+Tabucol, which performs the FS only 
once at each cycle. In addition, HCA can be considered as the anterior version of 
AMA [31] (cf. Table 3). In HCA, the size of the state set is fixed as 10, and the LS 
chain length (LC) values of Tabucol have to be adjusted for different instances. We 
can use *

S S Sp p p∆ = −ɶ ɶ , where 
*

* *1 (1 ) m mT T
S Sp p= − −ɶ , to achieve an approximate 

comparison between the algorithm in <Sp , Tm> and the reference algorithm in 
< *

Sp , *
mT >, under the condition that *

Sp <1. In Table 3, HCA is chosen as the reference 
algorithm, and the results of the seven graphs indicate that #STD achieves positive 

Sp∆ɶ  values over HCA on all the graphs except for DSJC250.5 and le450_25c. The 
better performance of HCA on DSJC250.5 and le450_25c might be due to the usage 
of Tabucol [38]. Both DSJC250.5 and le450_25c can be solved by Tabucol, and 
Tabucol is much more efficient than HCA in solving le450_25c [29]. 

Figure 2 gives the empirical run-length distribution (RLD) for the GCP instances 
solved by #STD, where RLD provides adequate information to describe the behavior 
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of an algorithm [40]. It can be seen that the steepness in every case is quite well, 
where above 50% trials have achieved the optimum in a Tm within one order of 
magnitude. Moreover, abrupt changes and heavy tails [36] are found in some cases, 
such as le450_25c and DSJC250.5, which may result from the stagnation in certain 
large benches or local minima. Such abrupt slowdowns appear in the later search 
stage, which may be improved through running MAFS multiple times [36, 40]. 

In Table 5, #STD.L and the GPB algorithm [34] are compared on the K* color 
series. Here #STD.L is defined as #STD with different NP and LI values, where each 
parameter is set as a value that is not larger than that of GPB and is not less than that 
of #STD. GPB [34] is a generational genetic algorithm manipulating a FS strategy, 
i.e., GPX+VDS. For GPB, only NR=3 trials were run for each graph instance. In order 
to evaluate each performance index of an algorithm over multiple instances, we define 
a rv value for each performance index of the algorithm as follows: a) choose the 
reference algorithm; b) compute the ratio of each performance index between the 
algorithm and the reference algorithm for each instance; and c) calculate the 
geometric mean value of all the ratios over all the instances. For ps, rv>1 is preferable; 
for Tm or NX, rv<1 is preferable. The results in Table 5 show that #STD.L produces a 
dominating performance over GPB. By taking GPB as the reference algorithm, the rv 
values of #STD.L are rv=1.045 for ps, rv=0.227 for Tm, and rv=0.212 for NX. 

Table 5.  The mean results achieved by GPB [34] and #STD.L. 

GPB [34] #STD.L 
Graph K* 

NP LI ps Tm TR NP LI ps Tm TR 
DSJC250.5 28 100 100 1.00 11.7 118 100 100 1.00 6.73 81.8 
DSJC500.5 48 100 500 1.00 485 686 100 500 1.00 122 172 
DSJC1000.5 83 500 100 0.33 690 239 500 50 0.45 508 244 
flat300_28_0 31 100 100 1.00 52.7 435 25 100 1.00 4.28 117 
flat1000_76_0 83 100 200 1.00 177 305 100 50 1.00 83.2 195 
le450_15c 15 100 100 1.00 1.9 11 25 100 1.00 0.16 7.74 
le450_25c 26 100 500 1.00 2341 1571 25 500 1.00 211 89.1 

 
The standard MAFS version has two main parameters, NP and LI. The larger is the 

NP, the more agents the system has. The larger is the LI for a stable RLS, the more 
powerful capability in finding the exits from benches the strategy has. By comparing 
#STD.L and #STD, usage of large NP and/or LI has two implications for MAFS, 
which, in one hand, leads to a better solution quality, as demonstrated on DSJC1000.5 
and le450_25c where the K* is achieved, but in another hand, makes MFAS require 
more computational cost, as shown by the other instances.  

The performance of MAFS may be further enhanced through employing one of 
more advanced strategies in its RLS that not only explores other local valleys but also 
increases the diversity of the newly generated information [29], such as Tabucol [38], 
ERA [47], Neural Network [17], Extremal Optimization [6], etc. In addition, the 
knowledge components of MAFS may be further improved by utilizing certain 
structural information and the related knowledge, if necessarily. For example, RT may 
use the quality information in a landscape [67], and may also combine it with certain 



auxiliary methods, such as a Boltzmann acceptance criteria in Simulated Annealing 
[41]. Moreover, both RFS and RSP may be turned to be more intelligent by utilizing 
certain population information of XSE, such as Kullback entropy [16]. 

5.2 Search Characteristics 

Although a stable RLS cannot tackle with any kinds of ruggedness, i.e., local 
minima in a landscape, it can lead to better states by finding the exits from benches 
[26], where each bench is a plateau but not a local minimum in a landscape. Hence 
when a stable RLS is used in MAFS, such as VDS orQT

LSR , the neutrality in a landscape 
is mainly exploited by the stable RLS rule, while the ruggedness is mainly explored by 
the RXS rule under the management of the multiagent framework. 

Table 6 lists the results of the MAFS versions with different components in RFS, 
which are applied to the KS color series. The version #LS.VD is defined by using the 
VDS as the RLS. Then three MAFS versions are realized, where each uses a different 
component for :

STD
XS GR : a) #GPP.E, which uses 

E
GPPR  for the RGPP; b) #GPP.IS, which 

uses IS
GPPR  for the RGPP; and c) #GVR.KF, which uses 

KF
GVRR  for the RGVR. Moreover, the 

reference algorithm for calculating the rv values is #STD (cf. Table 4). 

Table 6. The mean results by MAFS versions in different LS and XS rules. 

#LS.VD #GPP.E #GPP.IS #GVR.KF 
Graph KS ps Tm rg/p ps Tm ps Tm ps Tm 

DSJC250.5 28 0.82 3.82 0.010 0.68 3.70 0.97 2.20 0.78 2.59 
DSJC500.5 48 0.55 15.9 0.009 0.34 14.9 0.88 12.3 0.31 7.64 
DSJC1000.5 84 0.56 46.1 0.008 0.35 38.5 0.96 33.4 0.25 21.2 
flat300_28_0 31 0.98 5.38 0.010 0.75 6.49 1.00 4.13 0.93 2.98 
flat1000_76_0 83 0.51 41.8 0.009 0.22 37.7 0.99 33.6 0.20 23.1 
le450_15c 15 1.00 0.52 0.038 0.89 0.22 1.00 0.14 0.95 0.13 
le450_25c 27 1.00 0.55 0.003 1.00 0.52 1.00 0.60 1.00 0.56 

rv - 0.80 1.78 0.463 0.57 1.51 1.05 1.19 0.56 0.94 

Local Search. The advantage of long LS chains is shown in the results by #STD.L 
(cf. Table 5) and #STD (cf. Table 4), where #STD.L simply uses a larger LI value for 
solving le450_25c, which is able to obtain better K than #STD does. For 

QT

LSR , LI>1 
simply means it walks on a plateau at the last round, since it takes stable moves for all 
the unfixed vertices with its 

SYS
LSRR . The advantage of the stable LS using a larger LI 

value clearly indicates the significance of the search on plateaus. Moreover, it implies 
that some benches are quite large, thus the local search hardly finds the exits. 

By comparing the results between #LS.VD (cf. Table 6) and #STD (cf. Table 4) 
which are realized under two stable RLS rules, i.e., VDS and QT

LSR , respectively, two 
facts are indicated: a) most 1-moves are spent on plateaus, maybe in different levels, 
according to the quite small rg/p values (<0.05) in Table 4 and 6, where each rg/p gives 
the ratio of the number of greedy 1-moves ( f∆ <0) over that of plateau 1-moves 
( f∆ ≡ 0); and b) VDS is less efficient in the plateau search than QT

LSR , since #LS.VD 
obtains worse ps and higher Tm by using a larger ratio of plateau 1-moves (according 



to that rv=0.463 for rg/p). Compared with VDS, 
QT

LSR  uses an additional tabu matrix to 
restrict the input color list

 
at the local level, which may forbid many unpromising 

plateau moves. For LS strategies, there are three intuitive measures of effectiveness 
[59]: depth, mobility, and coverage. QT

LSR  with the tabu matrix may be efficient in 
leading the search to a better coverage than VDS in consideration of that the depth 
and mobility of both strategies are same on each plateau, where coverage measures 
how systematically the search explores the entire plateau [59].  

Recombination Search. The RXS rule, under the management of the multiagent 
framework, plays a major role in navigating the search in a rugged landscape, 
especially when a stable RLS is employed as the low-level strategy in the fusion search. 
Specifically, for GCP, the grouping-based RXS rule (RXS:G) works on group sets. 

The MAFS versions #GPP.E, #GPP.IS, and #STD are realized by simply using the 
different RGPP rules, i.e., E

GPPR , 
IS

GPPR , and 
MIS

GPPR , respectively. The results in Table 6 
show that #GPP.D achieves a much worse performance while #GPP.IS achieves a 
similar performance, when they are compared with #STD.  

Together with E
GPPR , 

AG
GGPR  simply leads to a HM in a large VHD size, and then the 

RGVR rule can achieve a Hinc in the same VHD size of the HM. 
Together with either 

IS
GPPR  or 

MIS
GPPR , 

AG
GGPR  leads to a stable HM in a large c-core size 

(VCC). Firstly, the c-core of stable group set achieved by either IS
GPPR  or 

MIS
GPPR  is a 

superset of that by 
E

GPPR . Secondly, AG
GGPR  can achieve a stable HM with a larger VCC 

size if the misleading information from the critical vertices on the group sizes is 
excluded. Then the RGVR rule can achieve a Hinc in the same VCC size of the stable HM. 

The RXS:G rule may prefer to obtain a HM in a large VCC size instead of in a large 
VHD size, so as to achieve a Hinc in a large VCC size. Moreover, each parent group set 
associated with a high-quality state is preferable to have a large VCC size. 

Some advanced methods for improving independent sets, such as those studied in 
the column generation approach [50] and lmXRLF [45], may also be used to enhance 
the c-core size of a stable group set by applying to certain groups in the group set.  

The MAFS versions #GVR.KF and #STD are realized by using the different RGVR 
rules, i.e., KF

GVRR  and 
KR

GVRR , respectively. The results in Table 6 indicate that using of 
KR

GVRR  can achieve a better performance than 
KF

GVRR . Removing a few vertices from a 
group allows the group to be evolved locally through adding the new vertices 
performed by the RVA rule. Although each group extracted from a high-quality state 
may be rather stable, a large group is not necessarily a superset of certain proper color 
class. Hence, the advantage of using the unbiased 

KR
GVRR  might result from that 

KR
GVRR  

allows all the related groups to be evolved, even the large groups.  

Decentralized Interaction. Table 7 summaries the results on the KS color series by 
four MAFS versions with a decentralized ( , )P LN NG  model at different density values, 
where NL/NP values are 0.2, 0.4, 0.6, and 0.8, respectively. A larger NL value means 
both a faster diffusion of the local information and a slower diffusion of the global 
information. Here the reference algorithm in calculating the rv values is #STD, where 
NL/NP is 1.0. Table 7 shows that the rv values of ps and Tm for each case are closed to 
1 when NL/NP varies from 1.0 to 0.2, meaning the performances of these MAFS 



versions are quite robust, which may be due to the good balance between the 
diffusions of the local and global information in the networks. 

Table 7. The results by MAFS versions for IPNET in different NL/NP values (from 0.2 to 0.8). 

NL/NP=0.2 NL/NP=0.4 NL/NP=0.6 NL/NP=0.8 Graph KS ps Tm ps Tm ps Tm ps Tm 
DSJC250.5 28 0.96 1.84 0.91 2.05 0.87 2.15 0.94 1.88 
DSJC500.5 48 0.65 11.3 0.80 9.18 0.76 10.8 0.76 10.6 
DSJC1000.5 84 0.93 27.5 0.94 26.7 0.93 28.2 0.93 28.0 
flat300_28_0 31 0.99 3.32 1.00 3.00 1.00 3.31 1.00 3.21 
flat1000_76_0 83 0.94 30.4 0.92 28.7 0.92 26.9 0.94 25.7 
le450_15c 15 0.96 0.14 0.97 0.14 0.98 0.14 0.99 0.14 
le450_25c 27 1.00 0.50 1.00 0.55 1.00 0.48 1.00 0.52 

rv - 0.98 1.03 1.00 1.01 0.99 1.03 1.01 1.01 

As a multiagent model, MAFS may have an advantage in the robust parallel 
computing, as agents may be designed to locate at different processors in a network. 
This may be useful in practice since solving large graphs is quite time-consuming. 

Firstly, MAFS stores declarative knowledge by the MA of agents and distributed 
the knowledge to the nodes, which make the algorithm very robust because there is 
not any key node(s) in this case, meaning the nodes will not fail occasionally during a 
run.. The centralized memory is a typical example of a key node, which is required by 
many frameworks, such as Immune Algorithms [16], Scatter Search [37], Genetic 
Algorithms [24, 34, 54], and Adaptive Memory Programming [31], etc. 

Secondly, the communication of each agent is simply spent on accessing one (or a 
few) state(s) memorized by other nodes during each learning cycle. Hence, the 
communication cost may be neglected in comparison with the computation cost.  

Thirdly, MAFS may still work well even if the interaction network is sparse, as 
indicated in Table 7, MAFS possesses a robust performance in the topologies with 
varied NL/NP values. In a real world, the mode of networks is often partially connected, 
i.e., some connections may be invalid under certain physical network conditions. 

Of course, in order to make MAFS support a communication between the agents in 
the real world, more efforts must be employed on the physical infrastructure. In 
addition, the current IPNET model is quite artificial, thus more experiments should be 
performed to evaluate its robustness. Another two interesting issues are to analyze the 
cooperative solving features of MAFS under various topologies [12], and to study if 
some of the features may boost the performance. Moreover, non-uniform models [65] 
such as small-world, ultrametric, power-law models, etc., including certain dynamic 
topologies, may be worthy further consideration.  

PAC Property. MAFS is not necessarily probabilistically approximately complete 
(PAC) [39], according to the law of bounded rationality [33] it follows. 

However, MAFS can achieve PAC in a simple way. Firstly, MAFS is PAC if the 
RFS of any agent is PAC. Secondly, the RFS rule is PAC if: a) its RLS rule is PAC; or b) 
its RXS:G rule is PAC and its RLS rule preserves the best state ever found. Thirdly, the 
PAC may be also achieved by some meta RLS rules. For Example, a meta RLS rule is 
PAC if it is chained by both a RLS rule in PAC and a stable RLS rule.  



In fact, to find a RLS rule in PAC is no difficult. For example, it is easy to prove 
that the random walk strategy (RW

LSR ), i.e., < RW
LSLR , P

LSRR >, is PAC. 
At each round, the probability of determining whether a vertex is moved by 

RW
LSLR  

is / | |RWV V , and the probability of assigning the vertex with each color by P
LSRR  is 

1/K. Hence the probability for assigning each vertex with each color is /(| | )RWV V K⋅ . 
For any incumbent state, the probability of achieving a proper coloring is  
( /(| | )RWV V K⋅ )|V|, which is larger than zero since VRW>0 and both |V| and K are finite 
values. Hence RW

LSR  is PAC if t → ∞  according to Theorem 2 in Ref. [39], i.e., any 
algorithm which, for any incumbent state, executes a random walk with a probability 
of at least larger than 0 at any given time, is PAC. 

6.  Conclusions 

In this paper, a multiagent fusion search (MAFS) is presented as a realization of a 
multiagent optimization framework to solve the graph coloring problem (GCP). A 
fusion search includes a recombination search (XS) working in a navigation role and a 
local search (LS) in an exploitation role. In MAFS, each of agents performs the fusion 
search with extremely limited knowledge in its personal declarative memory and 
cooperates with others through a decentralized interaction protocol in the environment, 
thus the agents are able not only to explore in parallel but also to achieve a collective 
performance under the law of socially biased individual learning.  

Compared with some state-of-the-art coloring algorithms, MAFS is competitive in 
both the solution quality and the computational cost when applied to some hard 
graphs. In addition, MAFS improves the best known results of two large graphs. 

In addition, we have investigated the search characteristics of the components of 
MAFS. The experimental results show that the Quasi-Tabu LS and grouping-based 
XS strategies are especially useful for tackling with neutrality and ruggedness in the 
GCP landscape. A simple analysis indicates that MAFS can achieve probabilistically 
approximately complete in an easy way. The potential advantage of the decentralized 
interaction protocol in a robust parallel computing is discussed as well. 

Future research is suggested to: a) achieve a scalable performance by the agents 
with adaptive strategies; b) explore certain cooperative problem solving features by 
investigating the performances with real-world interaction protocols; and c) study 
MAFS with suitable components to solve other hard computational problems. 

References 

1. Anderson, J.R.: Human symbol manipulation within an integrated cognitive architecture. 
Cognitive Science 29(3): 313-341 (2005) 

2. Bandura, A.: Social Learning Theory. Prentice Hall, Englewood Cliffs, NJ (1977) 
3. Barbosa, V.C., Assis, C.A.G., do Nascimento, J.O.: Two novel evolutionary formulations of 

the graph coloring problem. Journal of Combinatorial Optimization 8(1): 41-63 (2004) 
4. Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. Annals of 

Operations Research 130(1-4): 163-178 (2004) 



5. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for 
combinatorial global optimizations. Operation Research Letters 16: 101-113 (1994) 

6. Boettcher, S., Percus, A.G.: Extremal optimization at the phase transition of the three-
coloring problem. Physical Review E 69(6): Art. 066703 (2004) 

7. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial 
Systems. Oxford University Press, UK (1999) 

8. Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM 
22(4): 251-256 (1979) 

9. Bui, T.N., Nguyen, T.H., Patel, C.M., Phan, K.-A.T.: An ant-based algorithm for coloring 
graphs. Discrete Applied Mathematics 156(2): 190-200 (2008) 

10. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. 
International Joint Conference on Artificial Intelligence, San Mateo, CA, 331-337 (1991) 

11. Chiarandini, M.: Stochastic Local Search Methods for Highly Constrained Combinatorial 
Optimisation Problems. Ph.D. thesis, Darmstadt University of Technology, Germany (2005) 

12. Cioffi-Revilla, C.: Invariance and universality in social agent-based simulations. PNAS 
99(suppl. 3): 7314-7316 (2002) 

13. Coudert, O.: Exact coloring of real-life graphs is easy. Design Automation Conference, San 
Francico, California, USA, 121-126 (1997) 

14. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In [42]: 
245-284 (1996) 

15. Curran, D., O'Riordan, C.: Increasing population diversity through cultural learning. 
Adaptive Behavior 14(4): 315-338 (2006) 

16. Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm with stochastic aging and 
kullback entropy for the chromatic number problem. Journal of Combinatorial Optimization 
14(1): 9-33 (2007) 

17. Di Blas, A., Jagota, A., Hughey, R.: Energy function-based approaches to graph coloring. 
IEEE Transactions on Neural Networks 13(1): 81-91 (2002) 

18. Dietterich, T.G.: Learning at the knowledge level. Machine Learning 1: 287-316 (1986) 
19. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. International 

Conference on Parallel Problem Solving from Nature, Amsterdam, NL, 745-754 (1998) 
20. Edgington, T., Choi, B., Henson, K., Raghu, T.S., Vinze, A.: Adopting ontology to 

facilitate knowledge sharing. Communications of the ACM 47(11): 85-90 (2004) 
21. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. Journal of 

Graph Algorithms and Applications 7(2): 131-140 (2003) 
22. Erben, W.: Grouping genetic algorithm for graph colouring and exam timetabling. 

International Conference on Practice and Theory of Automated Timetabling, Konstanz, 
Germany, 132-156 (2000) 

23. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 
2(1): 5-30 (1996) 

24. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Annals of 
Operations Research 63: 437-464 (1996) 

25. Fragaszy, D., Visalberghi, E.: Socially biased learning in monkeys. Learning & Behavior 
32(1): 24-35 (2004) 

26. Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: local search topology. Journal of 
Artificial Intelligence Research 7: 249-281 (1997) 

27. Funabiki, N., Higashino, T.: A minimal-state processing search algorithm for graph 
coloring problems. IEICE Transactions on Fundamentals of Electronics Communications and 
Computer Sciences E83A(7): 1420-1430 (2000) 

28. Galef, B.G.: Why behaviour patterns that animals learn socially are locally adaptive. 
Animal Behaviour 49(5): 1325-1334 (1995) 

29. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. Journal of 
Combinatorial Optimization 3(4): 379-397 (1999) 



30. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers & 
Operations Research 33(9): 2547-2562 (2006) 

31. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-colouring 
problem. Discrete Applied Mathematics 156(2): 267-279 (2008) 

32. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph coloring 
for computing derivatives. SIAM Review 47(4): 629-705 (2005) 

33. Gigerenzer, G., Goldstein, D.G.: Reasoning the fast and frugal way: models of bounded 
rationality. Psychological Review 103(4): 650-669 (1996) 

34. Glass, C.A., Prugel-Bennett, A.: Genetic algorithm for graph coloring: exploration of 
Galinier and Hao's algorithm. Journal of Combinatorial Optimization 7(3): 229-236 (2003) 

35. Glenberg, A.M.: What memory is for. Behavioral and Brain Sciences 20(1): 1-55 (1997) 
36. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2): 43-62 

(2001) 
37. Hamiez, J.-P., Hao, J.-K.: Scatter search for graph coloring. International Conference on 

Artificial Evolution, Le Creusot, France, 168-179 (2001) 
38. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39: 

345-351 (1987) 
39. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. 

National Conference on Artificial Intelligence, Orlando, FL, 661-666 (1999) 
40. Hoos, H.H., Stützle, T.: Evaluating Las Vegas algorithms - pitfalls and remedies. 

Conference on Uncertainty in Artificial Intelligence, Madison, WI, 238-245 (1998) 
41. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated 

annealing: an experimental evaluation; part II, graph coloring and number partitioning. 
Operations Research 39(3): 378-406 (1991) 

42. Johnson, D.S., Trick, M.A., editors. Cliques, Coloring, and Satisfiability: Second DIMACS 
Implementation Challenge. American Mathematical Society, Providence, RI (1996) 

43. Joslin, D.E., Clements, D.P.: "Squeaky wheel" optimization. Journal of Artificial 
Intelligence Research 10: 353-373 (1999) 

44. Khanna, S., Linial, N., Safra, S.: On the hardness of approximating the chromatic number. 
Combinatorica 20(3): 393-415 (2000) 

45. Kirovski, D.: Efficient coloring of a large spectrum of graphs. Design Automation 
Conference, San Francico, California, USA, 427-432 (1998) 

46. Lerman, K., Galstyan, A.: Agent memory and adaptation in multi-agent systems. 
International Conference on Autonomous Agents and Multi-Agent Systems, Melbourne, 
Australia, 797-803 (2003) 

47. Liu, J., Han, J., Tang, Y.Y.: Multi-agent oriented constraint satisfaction. Artificial 
Intelligence 136(1): 101-144 (2002) 

48. Liu, J., Jin, X., Tsui, K.-C.: Autonomy Oriented Computing (AOC): From Problem Solving 
to Complex Systems Modeling. Kluwer Academic Publishers, Boston, MA (2005) 

49. Liu, J., Tsui, K.-C.: Toward nature-inspired computing. Communications of the ACM 
49(10): 59-64 (2006) 

50. Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS 
Journal on Computing 8(4): 344-354 (1996) 

51. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the 
quadratic assignment problem. IEEE Transactions on Evolutionary Computation 4(4): 337-
352 (2000) 

52. Mezard, M., Palassini, M., Rivoire, O.: Landscape of solutions in constraint satisfaction 
problems. Physical Review Letters 95(20): Art. 200202 (2005) 

53. Morgenstern, C.: Distributed coloration neighborhood search. In [42]: 335-358 (1996) 
54. Mumford, C.L.: New order-based crossovers for the graph coloring problem. International 

Conference on Parallel Problem Solving from Nature, Reykjavik, Iceland, 880-889 (2006) 
55. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, NJ (1972) 



56. Nowicki, E.: A fast tabu search algorithm for the permutation flow shop problem. European 
Journal of Operational Research 91: 160-175 (1996) 

57. Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking, and the flowshop sequencing 
problem. Evolutionary Computation 6(1): 45-60 (1998) 

58. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44(1): 3-54 (2002) 
59. Schuurmans, D., Southey, F.: Local search characteristics of incomplete SAT procedures. 

Artificial Intelligence 132(2): 121-150 (2001) 
60. Selman, B., Kautz, H.A.: An empirical study of greedy local search for satisfiability testing. 

National Conference on Artificial Intelligence, Washington DC, USA, 46-51 (1993) 
61. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. National 

Conference on Artificial Intelligence, Seattle, WA, 337-343 (1994) 
62. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring 

register allocation. ACM SIGPLAN Notices 39(6): 277-288 (2004) 
63. Stone, P., Veloso, M.: Multiagent Systems: A survey from a machine learning perspective. 

Autonomous Robots 8(3): 345-383 (2000) 
64. Trick, M.A., Yildiz, H.: A large neighborhood search heuristic for graph coloring. 

International Conference on Integration of AI and OR Techniques in Constraint Programming 
for Combinatorial Optimization Problems, Brussels, Belgium, 346-360 (2007) 

65. Walsh, T.: Search on high degree graphs. International Joint Conference on Artificial 
Intelligence, Seattle, Washington, USA, 266-274 (2001) 

66. Weyns, D., Holvoet, T.: On the role of environments in multiagent systems. Informatica 29: 
409-421 (2005) 

67. Xie, X.-F., Liu, J.: A compact multiagent system based on autonomy oriented computing. 
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Compiègne, 
France, 38-44 (2005) 

68. Xie, X.-F., Liu, J.: How autonomy oriented computing (AOC) tackles a computationally 
hard optimization problem. International Joint Conference on Autonomous Agents and 
Multiagent Systems, Hakodate, Japan, 646-653 (2006) 

69. Xie, X.-F., Zhang, W.-J.: SWAF: swarm algorithm framework for numerical optimization. 
Genetic and Evolutionary Computation Conference, Seattle, WA, 238-250 (2004) 

70. Zhang, W.: Configuration landscape analysis and backbone guided local search. Artificial 
Intelligence 158(1): 1-26 (2004) 

 


