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Abstract. A multiagent fusion search is presented for thapfr coloring

problem. In this method, each of agents perforradilion search, involving a
local search working in a primary exploitation raled a recombination search
in a navigation role, with extremely limited memagd interacts with others
through a decentralized protocol, thus agents bie ta explore in parallel as
well as to achieve a collective performance. As khewledge components
implemented with available structural informatiamdan formalized forms, the
Quasi-Tabu local search and grouping-based recatibinrules are especially
useful in addressing neutrality and ruggedneshefproblem landscape. The
new method has been tested on some hard benchmegksg and has been
shown competitive in comparison with several ergstalgorithms. In addition,

the method provides new lower bound solutions whpplied to two large

graphs. Some search characteristics of the propusétbd are also discussed.
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1. Introduction

Let G=(V, E) be an undirected graph, wheves a set of vertices arid is a set of
edges, the graph coloring problem (GCP) is to antV into K color classes, where
each is a subset dflabeled with same color. Forpaoper coloring, each color class
forms anindependent set, which has no adjacent vertices. GCP is one ofntbst
notorious models in graph theory: to compute thacex of an arbitrary graph
requires the timeD(2.4422") [21], and to color a graph wiph+2[P§J—1colors is
still NP-hard [44], where y is the chromatic number. It also has various appbas,
such as timetabling [22], register allocation [62}d some others [4, 32].

The landscape paradigm has been used for search in general [f88inally, global
structural information of the optimization task rispresented as a landscape [58]
containing two essential ingredients, i.e., tiepresentation space Sz and thecost
function f (3) . Eachstate S0 Sz is associated with a potential solution of th&td$he
function f (3), which is to be minimized, is used for measurimgduality of eachs.
The rationale of problem solving is then to finck thtate(s) with better quality by
moving in the landscape with the search stratagiézing structural information.

The GCP landscape can be studied from a pointes¥ win its geometric properties
[58] under specified neighborhood structure(s)ugieg on theruggedness, i.e., the




distribution of local minima, and theeutrality, i.e., the existence qdateaus, where
each plateau is a cluster of the neighboring statéise same quality. The strategies
based on local structural information may be sthprigoled by local minima [10].
For GCP, the existence of giant plateaus has bemmrs[52]. The neutrality becomes
significant when someenches tend to be very large [26], as studied in Satsliigy
Problem [60], where each bench is a plateau bua tatal minimum.

Local search (LS) [30, 60, 64], which improves each incumbetates by
neighborhood moves, has been applied to solve warpyoblems successfully. A
search strategy is defined dsble if it only allows the moves from one state to
another withAf < 0. Both thegreedy (Af <0) andplateau moves (Af =0) are stable.
Each stable LS strategy is stuck into the localimirm that it first encounters. Vertex
Descent strategy [34] is a simple example of alsthS strategy.

Noise strategies [61], which are not stable, altbevLS to make occasionaphill
moves (Af >0) to explore a rugged landscape. Typical exampielide Random
Walk [11, 47], Tabu Seard8], Simulated Annealing [41], etc. Noises mayntan
incomplete LS strategy intprobabilistically approximately complete (PAC) [39]
which achieves an optimum state with a probabdite as the run-time approaches
infinity. However, for searching efficiently undarreasonable cutoff time, a strategy
is preferable to exploit problem structural infotioa rather than to perturb blindly.

Recombination search (XS), which generates a state by combining theatiges
clues from two source states, utilizes the diffeeebetween two source states and
leads to an adaptive leaping [51]. The Graph-AdagRecombination [24] was
proposed by hybridizingveraging [60] with min-conflicts. For purpose of addressing
permutation symmetry [34, 70], grouping-based XS methods [23], suchGasedy
Partition Crossover [29], Union of Independent $&8§, etc [22], were proposed.

Fusion search (FS), a concept borrowed from Multi-Step Crossdwesion [57], is
defined as a chained combination between an XSaantS. Although FS has the
same interface as XS, the two components in FS Hdfgrent search roles, where
the XS finds a promising state as an incumbene sththe LS, while the LS locally
improves this state. The idea of FS has been uspdhttice [24, 29, 34, 60].

Various metaheuristic frameworks have been apptiesblving GCP, which use
LS, XS, or even FS as their search components.ekaeples include Ant Systems
[9], Adaptive Memory [31], Scatter Search [37], Immne Algorithms [16], Genetic
Algorithms [3, 19, 24, 34, 54], etc. In a framewpikis important to manage the
source information efficiently for its search compats by facilitating the emergence
of the positive clues as well as maintaining theedsity of information.

Autonomy oriented computing [48] stresses modelimg flexible autonomy of
entities and the self-organization of them for acsfic goal. It is possible to preserve
the diversity of the positive clues in the systdrb][with a local diffusion effect [68],
especially when each entity possesses its privaeary [69]. Moreover, allowing
agents to use memorized information to adjust thelraviors enable us to study more
intelligent agents [46]. Specifically, the compauttltiagent optimization framework
[67], which supports the cooperative search by iplaltcompact agents, has been
applied in solving hard computational problems,hsas Numerical Optimization
Problem [67] and Traveling Salesman Problem [6&.aAsimple multiagent system
[63], it may have the potentials of parallelismhustness, and scalability.



In this paper, a multiagent fusion search (MAFS)@CP is presented. In Section
2, a multiagent optimization framework in general described to support the
cooperative search by the multiple agents undetativeof socially biased individual
learning (SBIL) [28, 69]. In Section 3, MAFS is realized ansimplified way of the
framework, where MAFS not only supports the fussearch for each agent based on
extremely limited declarative knowledge, but alsorke in a decentralized way. In
Section 4, the knowledge components of MAFS ardémpnted to address neutrality
and ruggedness of the GCP landscape by utiliziadable structural information. In
Section 5, the characteristics of MAFS are studigdperforming experiments on
some hard graphs [24, 42]. Finally, this papewisctuded in Section 6.

2. Multiagent Optimization Framework

In order to achieve the goal of finding solutionfg)h at least reasonable quality, the
multiagent optimization framework is organized wahtonomous entities [49, 69]
that self-organize by manipulating certain knowkedgmponents which are realized
according thenternal representation (IR) of task and related world knowledge [55].

The framework consists &y active entities, called compaaments, and a daemon
entity, calledenvironment (ENV) [66]. For simplicity, the agents are homoges in
the sense that they have the same organizatioctigteu Each agent has an ability to
generate new states $ by manipulating available knowledge based on stmples
[69]. Moreover, agents achieve a collective perfamoe through interacting with
each other according to thaeraction protocol (IP) under the support of ENV.

2.1 Basic Concepts

The internal representation (IR) encapsulates theapy knowledge related to the
optimization task, which contains global structuirdiormation, i.e., the landscape
[58], and related local structural information. ktgithe landscape is quite general in
solving hard computational problems [58]. Localstural information may reduce
the local computation efforts and may lead thecdeanto the promising directions.

The general problem solving capability emerges feominteraction of declarative
and procedural knowledge [1, 55]. Declarative kremgle is represented in symbol
structures callecthunks, and procedural knowledge is represented in eleanen
information processes calledles. All required knowledge elements are instantiated
according to the IR and related world knowledgeerglonly the knowledge elements
using local structural information are regardetdeécstrongly problem-dependent.

Each chunk is a certain declarative data structangtaining a meshed set of
patterns [20, 35], and the content of a chunk sgiated by its name. Each rule is
represented a [68]. The subscript |_KEY designates a high-leveterface
used for handling with specific input/output paraense, where each parameter is
either a knowledge element or a simple data typel, the superscript |_NAME
designates the low-level realization. Each knowdeddement may have specific
settingparameters, where the value of each parameterecambd before a run.



2.2 Compact Agent

A compact agent is a socially situated autonomattisye49, 69] capable of making
decisions for itself which is subject to limitat®of available knowledge.

Each agent has two declarative knowledge sourdesly-it possesses a long-term
memory calledV, for supporting individual learning. Moreover, agbt one of the
chunks inM, is publicly accessed by the external world [49c&dly, it refers to an
equivalentsocial memory (Mg), which is owned by ENV and contains the chunks fo
achieving socially biased learning [25, 28]. Moregwvthe agent possesses a private
buffer memory called/ for temporarily holding the newly generated chunks

Each memory is defined by the chunks it possesdesie each chunk aggregates
certain particularities of the landscape. Moreoeach chunk in memory is updated
[35] by its owner only. Typical examples of a chunka memory include a state in
S, a state set [29, 68], or a special data structiureh as an ensemble of independent
sets [31], a pheromone matrix [7], a state in jsi@pace [43], etc.

The search capability in the landscape is achiduedhe generate-and-test rule
(Rsr) [18, 69], which contains @generating part Rg), a testing part Ry), and a
solution-extracting part Rs) [68]. The law of behavior is socially biased widual
learning (SBIL) [25, 28, 69], as a fast-and-frugaUristic in bounded rationality [33],
which is adopted by many species for adapting énréal world with limited time and
resource and is a mix of reinforced practice ofividial experience and social
influence. First, according to the current chunkMj, andMg;, theR; generates new
chunks and stores them irth; immediately. Afterwards, based on the chunk®lin
the Ry updatesvl,, and theRs extracts inclusive valid states and exports theiiBNV,
respectively. Th&s has no influence on the solving process and s thalized in the
simplest way. If without loss of generality, tRe only produces reflex behaviors that
may determine certain nontrivial properties of thenk(s) inMx [67].

2.3 Environment

The environment (ENV) [48] is a daemon entity pding background supports for
the cooperation among the agents by encapsulatiatable resources, even may
include the physical infrastructure [66], if necady. Here ENV plays two roles.

First, it holds asolution-depositing module, which is simply realized by storing the
best-quality state of all the states that are erpldoy theRs of all agents.

Secondly, it manages resources and services [B86]lfohe agents. Such as, a) it
constructs the initial contents of chunkshi, of all the agents with thenemory-
congtructing rule (R); and b) it organizes the correspondMg: for all agents based
on the available declarative knowledge throughitkeraction protocol (IP).

2.4 Working Process

The framework is initialized @t0. All the Np agents are constructed, and g rule

is executed to construct the chunkdg for all agents. Then states are extracted from
such chunks birs and are submitted to the solution-depositimdule in ENV. Then

all the knowledge components, including the IP MvE are instantiated.



The framework runs in iterative learning cycles.mBgning in a Markov chain, the
system behavior in theeh (tO[1,T,,,],) cycle only depends on the system status in
the ¢-1)th cycle, wher@yax is the maximal number of cycles. The learning pescs
terminated as if the proper solution is found,fahé conditiornt = Tyax is satisfied

Moreover, each cycle contains two sequential ckieps: the C_RUN step and the
C_POST step. Theg rule is executed at the C_RUN step, andRhandRs rules are
executed at the C_POST step. The using of the tmehsonizing steps simply
ensures the environment being unchanged duringerging process for all agents.

At each cyclete0), all the agents are activated in turn. Theabcbiased learning
process by thiéh activated agent in thth cycle can be represented as:

0@ RS- MAw
O g_ﬁ%g)ﬁ{é ~ENV

where eachM ), is organized by the IP in ENV. Moreover, the chuimks &), will
be cleared at the end of such a learning process.
At the end of each cycle, if necessarily, the infation related to ENV is updated.

M,(At()i)' M(Sti)(i) 0 E_Fﬁ”@—’ Mg()i) (1)

2.5 Summary

In summary, the framework is represented as a tuple <IR,Tyax, Np, Ma, Mg, Mg,
Rs, Ry, Rs, R, P>, where botfTyax andNp are simple parameters.

Given a known IR, the three types of memories uidiclgM,, Mg, andMg:, can be
specified in advance according to the names of khtmat each memory possesses,
although the contents of chunks have to be varnigohd the runtime.

The other knowledge components can be specifidierahdependently through
using different memories. For each agédty simply usesM,; Rs only depends on
Mg; Rr works on bothVi, andMg; andRs employs all the three available memories.

For ENV, IP accesses the chunksMp shared by all agents, and then organizes
Mg for every agent. Hence, IP may be realized in #eqgsophisticated way, if
necessarily. However, simple implementations atenofonsidered, if possible.

The number of setting parameters in such a framewmnot necessarily large
since many of the knowledge components may haves mynfew parameters. In
addition, in order to focus our studies on certataresting components, we may fix
many components in the simple forms. Those compeneith no variety, e.g., the
solution-depositingnodule in ENV, are out of our further concentration

3. Multiagent Fusion Search (MAFS)

The MAFS is an optimization system realized by gséimple forms of knowledge
components in the multiagent framework. It haseéhrain features.

Firstly, memories are specified with extremely timi declarative chunk&1, and
Mg both contain one state B, which are calleds®” and s, respectively, where
3 is publicly accessed by ENV since it is the onheahunk inMa. Mg holds an
equivalent state set called? , which refers to a set of states.



Secondly, a decentralized IP is considered for sup the interactions between
the agents. This is important, as in the real watdmals may observe neighbors for
achieving socially biased learning [25, 28], whiehds to a cumulative evolution of
knowledge that no single individual could invent ieown [2]. This IP employs a
directed network topology model (£). Each agent is associated with one node in
the network, and the node stores a reference gubécly opened knowledge M,
of the agent. A directed connection from the node® B indicates that the agent B
can use the referenced knowledge of the node Ae&oh agentx ¥ contains all the
referenced chunks of the nodes connected to the associated with it, which is a
subset ofx$ ={ 5{, [i O[1, N, 1, } and may be different for different agents.

Thirdly, in order to formalize some well-studied BSd XS strategies and to study
certain novel strategieBg is realized in a tupleRs, Res>, whereR-s=RxstR, s is the
fusion search (FS), and tete-picking rule Rs) serves as a simpl@owledge lens
[20] to choose one state frox{ as the input informatiomf R-s. The chaining
operator (‘+) indicates that the recombination search r{is) and the local search
rule (R s arechained, i.e., the output of the former ruys is exactly the input of the
latter ruleR s. The fusion is a concept borrowed from Multi-Stessover Fusion
[57], which is actually an XS strategy designedhvan extension of a LS strategy.
Moreover, Res may be understood as a spedik in consideration of the same
input/output parameters of them, which possessesctunponents in different search
roles: theR s rule playing a primary exploitation role and tRg; rule working in a
navigation role to find a promising state as thmimbent state for th s

To provide a straightforward understanding, Figlirehows the pseudo code of
MAFS from the viewpoint of a population-based optiation algorithm, where all
the knowledge publicly accessed by thgehFin ENV, i.e., X&' ={ 5 [i O[1, N1, },
corresponds to a virtual population of states,caitih éﬁ\‘(’i) is actually located M4
of theith agent. For each agenk( is at least transparent to it, since it simply refe
to X, which is organized by the \Br model. Moreover, because each agent shares
all its declarative knowledge i, with the external world, X can represent the
knowledge to be constructed By, into the memory, of all agents.

At the C_RUN step, thB; rule of each agent works in the following stepstwlo
states§), andsy), are chosen from the input information, whéfg =3 and
s is a state picked by tHRy from X ; b) theRys part of Res generates one child
state calleds" by using bothg!, ands!) as the parent states; and c) Big part
of Res further improvess() and finally stores it ag® in Mg.

At the C_RUN step, Th&; rule of each agent replacg$ by s according to a
specific criterion. TheRs rule is not mentioned in Figure 1 since it simpkports
39 to the solution-depositingodule in ENV.

In MAFS, the two parent states d¥-s serve different roles, especially in
consideration of the multiple cycles in a run. Untlee law of SBIL, the parerg{t),
always uses th&{ in M, of each agent as its input and the state genebgt&s is
always the candidate &'*V, while the pareng? uses a state frorx{ as its input
in a stochastic way. Hendgzs may be interpreted from a viewpoint of a guidechlo
search process, whegd) serves as an incumbent state to be improved ansitabe
which is picked fromx{ serves as the guiding information.



In the multiagent framework, since each agent pzese its own long-term
declarative memory, it is possible to preserve dhersity of positive clues in the
system. By utilizing their individual experiencebe agents are able to explore in
parallel, which may significantly increase the pabliity of escaping from local
minima in the rugged GCP landscape. W}, the agents are facilitated by the
social influence of IRet, thus achieve a collective performance searchastef than
they work independently. In addition, usageRpf in the FS is important in obtaining
good states, especially when some benches in tiel@w@scape are huge.

Data: IR(G, K) /* graph:G=(V, E), color numberK */
% Np, Tyax [* simple setting parameters */
% Re, Rxs Ris, Rr, Riniy IPneT /* knowledge elements: instantiated by IR */
Result: §' (the best state found)/* held by solution-depositingiodule in ENV */
begin
t=0 [* initialization stage */
XP=Rn(IR) xO={5{, iO[L N1}, 5§, belongs to théth agent */
§" =best(IR, X)) I* best(IR, X ): returns the best state k) */
while (t<Tyax and f(s") >0) do [* termination criteria */
t=t+1 [* iterative cycles */
for i=1 toNp, do /* C_RUN step, for théth agent */
X@n= IPNET(IR X I* organizesX g, by IPyer */
§9. =5, =Rs(IR, X&) /* filters input information */
5V =R(IR, sé‘) ,59) I* performs recombination search */
& =RAIR, s(‘)) I* refines s and stores it as}, in Mg */
for i=1 toNp, do [* C_POST step, for thi¢h agent */
580y =R(IR, s}f(),) &) I* determines which state i}’ */
- L if (Y < f(8))then s =51, /* storesgl},as s ifitis better */

end

Figure 1. Pseudo code of MAFS from the viewpoint of a popatabased algorithm.

In summary, MAFS can be represented as a tuple<iR, Tyax, Np, Rsp, RxstRLs,
Rr, R, IPyer™>. All its components can be realized in a rathecodipled way since
the memory specification is known. Moreover, mamyt® components may be not
strongly problem-dependent if they do not use amwall structural information. For
example, the IR+ model may not utilize any structural informatiam,bothRe and
Ry are suggested to only use (or even not use) timabstructural information of IR.

4. Thelmplementation for GCP

The implementation of the knowledge components iH4 is especially focused
on Rys and R s, because they play the major roles in tacking wigutrality and
ruggedness of the GCP landscape in the multipleesyaf a run, althougRyy;, which
constructs the totalliNr states at=0, may also utilize local structural informatiam t
facilitate the search process through providing@dgstarting status, if necessarily.



Formalized forms are used to realize the ruleRgfandRys, which is important
not only in stressing the difference between variceslizations, but also in leaving
certain flexibility to develop novel variants lobal

4.1 Internal Representation (IR)

The primary input information of the graph coloripgblem (GCP) contains both the
graph, i.e.G=(V, E), and the number of available colors, ik.,

Normally, a preliminary data structure, i.e., theng-basedassignment (S) [23],
is considered. Each has Y| elements, where each element corresponds totexver
and can be assigned a color value. An assigneéxvéstcalledcritical [30] if its
violation number (vio), i.e., the number of vertices within the samecalass that are
adjacent to the vertex, is larger than 0. The nurobassigned vertices is call®d. A
configuration is then defined as@mplete assignment with V= |V|.

For the GCP landscape, each configuration is a safl S;, whereS is an integer
representation space wigh O[1, K], for DjO[L |V |, , S is the color of thgth vertex
of . The cost function isf (3) =z'}1:'1vio(§,j)/2, wherevio(g, j) = 0 is the violation
number of thgth vertex. Then an optimal solution is a statethat satisfiesf (') =0,
which means all its vertices are not assignedarrctitical status.

The local structural information relies on thdjacency matrix. Any of edge ing
which has two adjacent verticgsandj, are described with the TRUE values at the
two corresponding entrieg,(j,) and {y, jo) in the BooleanV| x [V| matrix.

An assignmeng can be simply constructed with some heuristics hitlize the
local structural information from the adjacency rxatnvolving the distribution of
node degrees [65], most-constrained vertices [@&], Examples of these heuristics
includeDSatur [8], XRLF [41], ImXRLF [45], etc.

Moreover, each assignmeatwith V,<|V| can be constructed into a staté S
by avertices-assigning rule Rys). Each unassigned vertex is assigned a randomly
chosen color [29] by theandomizing Rya rule (RE) and a color with the minimal
violation number by thenin-conflicts Ry, rule (R2<) [24, 37].

4.2 Local Search

A local search strategy (LS) tries to achieve improent on an incumbent state with
certain neighborhood moves. For GCP, as one ofrépeesentative models of
Constraint Satisfaction Problems [47], LS stratediased on fioves [30] are often
considered, since thoves can be significantly speeded up by associatin states
with a violation table [47]. Here arhove changes the color of a single vertex in the
incumbent state. In addition,rleves possess theonnectivity property [56], i.e., there
exists a finite sequence of such moves to achleveptimum solution from any valid
state. Many sophisticated moves, suclkespe chain [41], Shuffle [27], etc., can be
represented by a finite sequence ahdves.

For GCP, the violatiotable is simplified as &]x K violation matrix y, , in which
each entry , (j,k) =0 (jO[L|V |l ,kO[L,K],) is the number of vertices within the



kth color class ofs adjacent to thgth vertex. The initialization of such a matrix
takes the time complexit@(|V |K). Each delta valuaéf =, (j,5;)) - % (j.k) can
be obtained in constant time before the color efti vertex changes frosy to k,. If

a limove is actually performed, both columsg andk, of the matrix are updated,
where the updating take3(|Vv |). The matrixy, is not the same as the matid{24],

in which entryA(j,k) represents the effect of changing the color of rjaddethe color
k, where the initialization take®(|V £ [K ) for and each Irove takesO(|V |K ).

For the purpose of representing varids strategies in formalized forms, three
hierarchical levels are used, i.e., a)libal level (R_q), b) theround level (R «), and
c) themeta level, if necessarily. A basig s strategy can be achieved by a tuple <
R «>. A meta R s strategy can then be achieved by chaining ceRairstrategies
being on the same incumbent state. For a lasjdt is stable if itsR g only allows
stable moves. Formeta R g, it is stable if all its componelR s strategies are stable.

For convenience, the best state found so far byRtbeule is called 8., which is
recorded only when a LS strategy is not stable.

Thelocal level. TheR g decides a destination color fomisve at each vertex. Here a
color list (') contains certain colors. For thth vertex, the color is randomly
selected from &andidate color list corresponding to th@put T ;, with the current
colors; excluded. The vertex is definedfagd if the candidate color list is empty.

With the violation matrixy, , one simple way is to define an input color listby
utilizing , (j.k) values. For example, tHeast-violation [, , i.e., [y, contains
all colors with the minimum violation value of tith vertex.

The 1moves can be further guided by using\dX K tabu matrix [38]. If a 1-move
leading to a state no better than is performed, then its original color is declasesd
tabu for a certain number of suchnieves (calledtabu tenure). The tabu tenure is
calculated asu, (A) + a V. [29], where U, (A) returns an integer value selected in [0,
A-1], at random and/c is the number of the critical vertices in the eutr 5. The
default values oA and a are 10 and 0.6, respectively [29]. Here the se@ary i.e.,

a V., provides a self-adaptive scheduled neighborh@becton; and the first part,
i.e., U, (A), introduces certain fluctuation into such schedylestess.

For the input T ;) , therandomwalk R g (R uses the list of all possible colors;
theleast R g (RY ) uses the listr,;,; and theQuasi-Tabu R g (RL) uses the list
Civiy N Cwrgjy» Where thenon-Tabu ;) (Cyr(;)) is defined as all the colors that are
not in tabu status of théh vertex. BothRY and only allow stable moves.

The round level. The R  executesR g on selected vertices in a specified order
during a round. Theiinimal-critical R & (R%) selects a rove with the maximum
deduction of f (3) by examining all critical vertices [29]. Theystematic R (RSY)

[34] takes each unfixed vertex in turn, and perfoeach Imove based on a specified
R g rule. Theprobabilitisic R « (RE,) takes each vertex in turn, and then performs
the 1move on the vertex selected with a probabilitai/ V| (Vew OO0,V [k )-

The meta level. This level manages one or mdig; strategies into a meta LS strategy.
One simple way is to combine differdRts strategies by using the chaining operator.



In addition, thdocal cutoff criterion (Rec) is often considered, where oRgs rule is
executed in multiple rounds. Generally, the ex@eutf R, is always terminated if
all vertices are fixed during a round. Specificatlye deterministic Roc, (RZ, ) also
terminates the search in exactly rounds [29]; while themprovement-based Rqc;
(RL,) also terminates if no further improvement on the occurs forl, rounds [11,
34]. In the case that large plateaus exist in ti@&PQandscape, it is difficult in
assuring if a local minimum is actually reachedreasLc>1 orL,>1.

The Instances. The random walk strategy R%) can be represented by a tuple
<R RE >. TheVertex Descent strategy (VDS) [34] can be represented a®R¥s<
RS > RU > TheQuasi-Tabu strategy RZ) is defined as <RZ ,R=¥ >, RU >.

As an intermediate version between VDS [34] arabucol [38], RL is not
completely new since it inherits the traits fromtbof them. However, as an essential
difference fromTabucol, is a stable strategy, which may be terminated aérly
all its vertices are fixed during a round due te thstriction of the tabu matrix. The
tabu matrix is updated only whilerleve is searching in a plateau. As same as VDS,
it cannot escape from the local minimum it firstceanters. But it may be more
efficient in finding the exits from benches by iziihg the tabu matrix.

4.3 Recombination Search

The grouping-based Rys (Rxsg) IS aRxs rule based on the grouping method [19, 23,
29, 37]. Here agroup set (H) is defined as a set & groups, where each group
contains a set of vertices. By using groups,pdrenutation symmetry [34, 70], which
has massive redundancy K!) for labeling the colors, can be broken naturally

The numbers of the total and the distinct verticeanH are calledvyyr andV,p,
respectively. Then aH with V=V, is defined as aimplex H, where each of its
vertices only exists in one group. Each assignmamt, hence each configuration
state, has aequivalent simplexH by simply taking each color class as a group. A
stable H is defined as aHl that each of its groups is an independent set (IS)

For the rugged GCP landscape, it has been suggistedood states may contain
a fairly robust tore’ [34]. The exact core, or calldshckbone [70], may not exist in a
meaningful size due to the existence of giant plagewhich contain the majority of
solutions [52]. The “big valley” hypothesis [5, 570], which has been validated in
many hard computational problems, suggests thagrbletcal minima tend to have
smaller distance from the closest optimum by slgacmmmon partial structures. For
GCP, such partial structures may be associatedgrithps in a certain way.

The concept ofomplex core (c-core) is introduced here: ea¢thhas one exactly c-
core, i.e., a stable group set defined as a sahsbe H where all its critical vertices
are excluded. For ea¢h its c-core size (V) is theVyp of its c-core and is not larger
than theV,p of theH. The c-core of each statiteis exactly the stabld itself.

In order to navigate in the rugged landscape, #éclprinciple of realizing Rysc
rule is to combine the positive partial structuessociated with the parent states as
well as to allow the adaptive leaps into new lowalleys. Formally, there is



Rxsc=<Repp: Raap, Revr: Rva>, Which contains four parts working in sequengiglps.
First, two source stategl!). and §%¥ are translated into twequivalent group sets
Huase @and H,¢, respectively. The three early parts, igrgprocessing (Rgpp), group-
picking (Rggp), andvertices-removing (Revr), Which generates simplex H calledH¢

by operating on the two parent group sets, Hg,s andH,«. Afterwards, theH; is
translated back into an equivalent assignment.hén last step, the assignment is
constructed into a sta&" , by avertices-assigning (Rya) rule (see Section 4.1).

Preprocessing. The Rgpp preprocesses each inpitof Hy.ee andH,¢ into a group set
containing suitable positive clues. Tlegquivalent Rgpe (RE,) returns the original
input H [23, 29]. ThelSRepp (R, ) reduces each group in theinto an independent
set (IS) by removing each critical vertex with axinaum number of neighbors in the
group [19, 37]. ThéVlISRgpe (RYS) further expands each IS into a maximum IS [21]
by inserting each of the vertices with a minimammer of neighbors in the IS [31].

Either R, or > transforms each input into a stable one. Moreover, tihe
outputted by |s a subset of the inptit and a subset of thé outputted byRMS .

The Ve S|ze of the group set outputted B}, is not smaller than that bRE,
since certain vertices in the ingdtmay no longer be critical as other critical veztic
are removed, and thé size byR™S is obviously not smaller than that RES, .

Group-Picking. The Rggp generates the group def, by picking outK groups from
the both parent group sets, i.Bys andH,«. Thealternate-greedy Rgp (RZS) for
picking out eactHy is achieved by two steps. The first step is tecebne parent
as the target, called;. Here it is achieved by selecting one of themradttely [29].
The second step is to pick out a grouginas theHy . Here the elemertiyy with
maximal size off (Hy, ;) O ...0 Hy gy )0 Hy gy |iS plcked out as they [29].

RZ aims at achieving By with two features: a) they, has an enough distance
from the both parent group sedg.. andH,g, thus it allows adaptive leaps into new
local valleys, which has been used by algorithn$ B exploring the “big valley” [5,
57, 70] in a rugged landscape; and b)khehas a larg&/,p size. If both parents are
stable group sets}y is also a stablel, thus theVc size ofHy, is also large.

VerticesRemoving. The Rgr achieves a simplei, called H;,,, by removing all
redundant vertices in théy, whereH;. is a subset dfly, and has a samé,p size as
Hu. For each vertex existing in multiple groups, firet-keeping Revr (REE) only
keeps the vertex in they with the smallesk value [29]; while theandom-keeping
Rowr (REE) keeps the vertex in a group selected at random.

It is rational thatH;,. has a larg&/cc size, thusH;,. will benefit givenHy has a
largeVcc size. IfHy, is a stabléd, then every potentidd;,. has the sam¥é.¢ size.

The Instances. The grouping-based method itself and its parteHhzen studied in

recent years, especially the greedy partition aneess(GPX) [29] and its variants. For

example, GPX can be represented a&ls RZ, RE RE> MoreoverRGW has

been applied to the independent sets in the adaptamory [31], and botR.S, and
I have been considered in another generalized vej3in



The standard version of grouping-based recombingiRiZ ) is defined as |9,
R, R RMI > which differs from the previous methods in atsetwo parts and
the partREE is a novel one. Together witR2¥, RZ and REE work on stable group

sets to generate a simplex group set with a laiggre size in an unbiased way.

4.4 Standard MAFSVersion

Formally, the standard version of MAFS, called #$€Bn be represented as a tuple,
i.e., <IR, Tuax, N, RE, R +RZ, R?, RB¥, Gy v,y >. Other MAFS versions are
then defined by applying the corresponding modiitcgs) to #STD.

G, .~y is defined to describe a staticyH? model: each node has, nodes
connecting to it, where th&l, nodes are randomly selected tabD and all the
connections are directed and static in a run. & dhse thaiN, =Np, because the
topology is fully-connectedGy, n,) iS equivalent to the centralized memory [68].

Therandomized Re rule (RE) picks out a state fronx at random. Thelirectly
Rr rule (RY) replacess( by s directly, thus thes{’ in M, of an agent is the
most recently state generated by the agent itself.

The R rule constructs the totalp states by three steps: a) to construct an
template assignment [29], called, corresponding to the firgt color classes found
by Dsatur [8]; b) to generate each with RE base on thes. [29]; and c) to improve
each generated immediately with .

By default, the parameters a¥g=25 andL,=50 for the Rcmm_ of RL, respectively.
Tuax is fixed as 500. In addition, thereNs = N» for the Gy, n,) by default.

5. Experimental Results and Discussions

The characteristics of MAFS are investigated byetkgeriments on the hard graphs.
There are two main indices for measuring the paréorce of an algorithm. The
first is the solution quality, which is the problitlito find one solution for givei,
calledps (psC1[0,1]; ). The larger is thes, the better the performance. Tpgcan be
estimated withiNg/Ng, whereNs is the number of satisfied trials that achieveppro
coloring, andNg is the number of trials. All average results avalgated with the
satisfied trials. The second index is the compaitadi cost. In the comparison of the
algorithms across different platforms and redudimgecessarily impacts caused by
the low-level details, it is often preferable taeuspresentative operation counts, or
calledrun-length, is preferred to be used for reducing unnecegsemipacts caused
by the low-level details rather than the CPU tiras,the first is a more platform-
independent measure of the computational cost algarithm [40].R_s andRys both
execute major computations in multiple cycles his paperT, (x1&) is the count of
1-moves andNyx=T; [N, is the count oRys operations, wher@g is the cycles taken
to reach the last improvement. The smaller are Theand Ny, the better the
performance. In solving GCP, the run-length is abtarized byT,,, because Iroves



consume much more computational time tHag operations, wherd, is huge.
Therefore, the performance indices can be simdlidie a tuple, g5, T»>.

5.1 Basic Performance

The random graphs with a density0.5 is a traditional class of benchmark instances.
Table 1 lists the mean results of 10 trials by #SdDboth the 100-node (gcol01-
gcol20) and the 300-node (gcol21-gcol30) instanedsch are available from the
OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/cdlimfio.html). For each
instanceps, T, andTg are reported for the coldét. Thevalue K denotes the smallest
number of colors needed for which each instancebsacolored without a failure.
The results show that all the 100-node instancedessolved with shoifiz values.

Tablel. Mean results on random graph instances @5 by #STD of MAFS.

Graph| K| ps | T | Tr | Graph|K] ps | Tp [ Tr [ Graph[ K [K] ps | T | T

gcol01 15 l.O(I)0.0lJ 0.6gcol1115|1.00 0.00¢ O.ZIlgCO|21 33132 (0.703.867 186.4
gcol02 15 l.O(I)0.0lJ 0.8gcol1215|1.00 0.017 2.]lgCO|22 33133(1.002.014 72.4
gcol03 15 l.O(I)0.0Z( 2.7gcol13(15|1.00 0.011] O.ZIlgCO|23 33132 (0.702.6171 104.7
gcol04[15 [1.000.01] 1.4gcol14[15/1.00 0.03¢ 7.8gcol24 33 [32 |0.203.89¢ 160.¢
gcol0515 [ 1.090.011 0.0gcol15[15/1.00 0.027 3.6gcol25 32 32 |1.003.85¢ 143.]
gcol06 |15 l.O(I)0.0l' 2.2gco0l16(15]1.00 0.012 0.4gcol26 |33 [32 |0.101.279 84.G
gcol07 |15 l.O(I)0.0ll 0.5gcol17[15]1.00 0.02¢ 5.2gcol27 (32 (32 {1.003.087 126.5
gcol08 |15 l.O(I)0.0lZ 0.2gcol1815|1.00 0.012 0.5gcol28(33 (32 [0.104.613 225.(
gcol09 15 1.0(1)0.005 0.1gcol19]15|1.00 0.031 5.3gcol29(33 [32]0.102.873 130.(
gcol10[15 [ 1.090.014 2.4gcol20[14/1.00 0.02¢ 6.6gcol30 33 33 |1.002.03( 69.7

Table2. Average results on random graphs vdt®.5 byTabucol [38], GLS [24] and #STD.

[V| [Number of Graphs ¥ [Ky from [38]|Ky, from [24] K from [24]| Ky | K K
100 20 16 16 15 14.95 1514.95 14.95
300 10 35 35 34 335 33 328 322

Table 2 summarizes the average results reportetabycol [38], by the genetic
algorithm hybridized with a local search (GLS) [24F well as those obtained by
#STD, where) is a probabilistic estimation of the chromatic nembf a group of
graphs [24]. The valugy, denotes the smallest number of colors for whitly@phs
of the same\|| can be colored with=100%. Both the algorithm from [24] and #STD
find smallerk,, thanTabucol for the 100-node graphs. Moreover, for the 300enod
graphs, #STD achieves better results than the jp@tious algorithms [24, 38] for
bothK, and K , while the averagK is even smaller than the average

For further demonstration of the performance of MRotally 20 representative
challenging instances are selected from a mixedosdtoth DIMACS [42] and
COLORO04 fttp://mat.gsia.cmu.edu/COLOR0Q4raph instances, where C2000.5 is a
large graph from the clique part of the DIMACS Céiafjle. Some easy graphs are
excluded, such as: a) the graphs that can be rddote trivially [10, 11], such as




games120, Book (5 graphs), Miles (5 graphs), and ithphs (4 graphs); or b) the
graphs that can be solved efficiently by simplertstics includingDSatur [8] and
XRLF [41], such as MYC (5 graphs), REG (14 graphs), CARd most Queen
Graphs, which may due teperfect [13] or the distribution in node degrees [65].

Table3. Results on challenging graph instances by #STdsame existing algorithms.

*

Graph VI | d[KTK] ps | Tw [ Tk | DSIXR[TC] 1G] S [MIPS[ILS|AMA]IA]ABA

abb313GPIA | 1559.04 9 91.0419.322.0 11 12 9 11 9
ash958GPIA | 1916.01 4 41.006.34590 6 5 4 6 4
C2000.5 200@®.50162150 0.64 70.9 410 188164 162

DSJC125.5 128.50 17 17 1.0¢ 0.2951.4 21 18§ 18 17 17 17 1718 17
DSJC250.5 250.50 28 28 1.042.04 114 3§ 2928 32 28 28 28 2828 29
DSJC500.5 500.50 48 48 0.8407.70 173 675049 571 49 49 50 48 50
DSJC1000.5 | 1000.50 83 84 0.94 31.4 29¢ 114 8689102 89 88 90 84 91
DSJC1000.9 | 1000.90224223 0.4d 17.9 284 297232 2282271 224 | 229
DSJR500.1c 500.97 85 85 1.04 1.748.74 87 91 85 85 85 86 85
flat300_26_0 [ 300.48 26 26/1.04 0.1420.2 41 33 36 26 26 26 2627 26
flat300_28 0| 300.49 31 31/1.042.49 103 41 3332 35 311 31 31| 31[32 31
flat1000_50_Q 10000.49 50 50 1.04 0.8453.5 117 84 50 50 50 8§ 50 50
flat1000_60_Q 10000.49 60 60 0.50 1.94 222 113 87 [10Q 60 60 89 60 60
flat1000_76_0 10000.49 83 83 0.9 27.4 287 114 8787102 89 87 89 84 84
latin_square_10 9000.76 98104 0.2 109 235 126117 [105 98 99103 104 |10Q

le450_15c 450.17 15 151.000.137.14 24 1916 25 15 15 15 1515 15
le450_25c¢ 450.17 26 27 1.04 0.540.40 29 27 26 26 26 26 26
gg.order100 |100000.02104 100y 1.04 0.490.00 103100 100 100

queenl6_16 | 6320.19 17 1§ 1.04 0.030.00 21 17 1§ 17 18

schooll_nsh 350.371 14 14/ 1.04 0.040.2¢ 15 19 14 20 14 1419 14

Table 3 summaries the results on the challengimgptyinstances by #STD of
MAFS and existing algorithms. For each grapth,i$ the number of verticed,is the
density, an is the best-known color size. For #STR=10 trials are run, then the
mean results ofs, Ty, andTg are reported for thK. It also summaries the best color
sizes achieved by some existing algorithms, indg@iSatur (DS) [8] tested in [31],
XRLF (XR) [41] tested in [11],Tabucol (TC) [38] tested in [29], iterated greedy
algorithm (G) [14], S-IMPASSE §) [53], iteratediocal searchI(S) [11], minimal-
state processing seardllPS) [27], adaptive memory algorithnA4A) [31], immune
algorithm (A) [16], and ant-based algorithrABA) [9]. Bold face indicates that the
color size is not worse thdfi. It shows that #STD is competitive to the statehef-
art algorithms in achieving . It is impressive that #STD obtains néwesults for
two large graphs in high densities, i.e., C20008 BSJC1000.9. It also shows that
gg.orderl00 can be solved only by the stable L#hénstage of initialization. For
latin_square_10, MAFS is not very efficient, whichay due to the additional
symmetry that all the vertices are in the sameategr

For all the following experimentd\z=100 trials are run for each case so as to
achieve more reliable statistics of the performaimtices. In consideration of the
limited available computational resources, we vgitus on a small subset of the
challenging graph instances, which includes: ay fmandom graphs, DSJC250.5,



DSJC500.5, DSJC1000.5, and DSJC1000.9; b) twogflaphs, flat300_28_0 and
flatl000_76_0; and c) two structural Leighton ggdh450 15c and le450 25c.

Table4. The mean results achieved by HCA [29] and #STD.

HCA [29] #STD

Le INJ ps | T | T | Ps | T | Tr | rgp | 40s

DSJC250.5 | 28000 [1(0.90 0.49 235 0.901.87 1020.026-0.099¢
DSJC500.5 | 486600 [ 1(0.50 4.90 865 0.759.64 2100.019 0.005¢
DSJC1000.5| 8416000| 5/ 0.6Q 20.71283 0.9427.5 2710.017 0.235]
flat300_28_0| 312000 |100.60 0.64 790 1.003.31 1230.027 0.008¢
flat1000_76_{83 [16000| 50.80 17.1008 0.9328.5 2860.017 0.0024
le450_15¢c | 185600 [100.60 0.19 24 1.000.147.910.174 0.5191
le450_25c | 274000 [11.00 0.09 18 1.000.4490.310.003 ;
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Figure 2. Run-length distribution (RLD) for #STD on the ghap

In Table 4, #STD and the hybrid coloring algoritfiHCA) [29] are compared on
the Kg color series K=84 for DSJC1000.5 an&=27 for le450_25c). HCA [29]
maintains a state set supporta@S, i.e., GPXFabucol, which performs the FS only
once at each cycle. In addition, HCA can be comsiii@s the anterior version of
AMA [31] (cf. Table 3). In HCA, the size of the staset is fixed as 10, and the LS
chain length I(c) values ofTabucol have to be adjusted for different instances. We
can useAps =ps - ps , where ps=1-(1- p*S)Tm/T% , to achieve an approximate
comparison between the algorithm inpg T and the reference algorithm in
<p:,T; >, under the condition thap; <1. In Table 3, HCA is chosen as the reference
algorithm, and the results of the seven graphscatdithat #STD achieves positive
Aps values over HCA on all the graphs except for DSIC2%nd 1e450_25c. The
better performance of HCA on DSJC250.5 and 1e456 aght be due to the usage
of Tabucol [38]. Both DSJC250.5 and le450_25c can be solwedrdbucol, and
Tabucol is much more efficient than HCA in solving le456¢729].

Figure 2 gives the empirical run-length distribatiRLD) for the GCP instances
solved by #STD, where RLD provides adequate inféionao describe the behavior



of an algorithm [40]. It can be seen that the stegp in every case is quite well,
where above 50% trials have achieved the optimuma iy, within one order of
magnitude. Moreover, abrupt changes and heavy [@6lsare found in some cases,
such as 1e450_25c and DSJC250.5, which may resutt the stagnation in certain
large benches or local minima. Such abrupt slowdoappear in the later search
stage, which may be improved through running MARS8tiple times [36, 40].

In Table 5, #STD.L and the GPB algorithm [34] amnpared on th&* color
series. Here #STD.L is defined as #STD with difféfd, andL, values, where each
parameter is set as a value that is not larger tthetnof GPB and is not less than that
of #STD. GPB [34] is a generationgénetic algorithm manipulating a FS strategy,
i.e., GPX+VDS. For GPB, onlig=3 trials were run for each graph instance. In prde
to evaluate each performance index of an algoritkier multiple instances, we define
a r,value for each performance index of the algorithenf@lows: a) choose the
reference algorithm; b) compute the ratio of eaelfggmance index between the
algorithm and the reference algorithm for each ainsg; and c) calculate the
geometric mean value of all the ratios over allittetances. Faps, r,>1 is preferable;
for T, or Ny, ry,<1 is preferable. The results in Table 5 show #&ID.L produces a
dominating performance over GPB. By taking GPBhasreference algorithm, thie
values of #STD.L arg,=1.045 forp, r,=0.227 forT,, andr,=0.212 forNy.

Table5. The mean results achieved by GPB [34] and #STD.L.

Graph K’ GPB [34] #STD.L
Np | Li | Ps| T | TRINp | Li | Ps | T | Tr
DSJC250.5 | 2400/100|1.00 11.1 118100100 1.0Q 6.73 81.9
DSJC500.5 | 4400/500(1.00 485 686100500 1.0Q0 122 172
DSJC1000.5 | 85300(100|0.33 690 23950050 | 0.4% 508 244
flat300_28 0| 31100|100|1.00 52.7 43525 [100| 1.00 4.28 1171
flatl000_76 (B83|100[200(1.00 177 30510050 | 1.0083.2 194
le450 15c 1800/100(1.00 1.9 1125 |100| 1.00 0.16 7.74
le450 25c 26.00{500(1.00 2341157125 |500| 1.0Q0 211 89.1

The standard MAFS version has two main parameirandL,. The larger is the
Np, the more agents the system has. The larger i, th@r a stableR s, the more
powerful capability in finding the exits from bereshthe strategy has. By comparing
#STD.L and #STD, usage of largé and/orL, has two implications for MAFS,
which, in one hand, leads to a better solutionigyas demonstrated on DSJC1000.5
andle450_25c where thK is achieved, but in another hand, makes MFAS requi
more computational cost, as shown by the otheamtss.

The performance of MAFS may be further enhancedutiin employing one of
more advanced strategies in Rs; that not only explores other local valleys bubals
increases the diversity of the newly generatedrin&tion [29], such a%abucol [38],
ERA [47], Neural Network [17], Extremal Optimizatio[6], etc. In addition, the
knowledge components of MAFS may be further impdov®y utilizing certain
structural information and the related knowled@@eicessarily. For examplB;y may
use the quality information in a landscape [67} amy also combine it with certain



auxiliary methods, such as a Boltzmann acceptariteria in Simulated Annealing
[41]. Moreover, bothR-s and R may be turned to be more intelligent by utilizing
certain population information &€, such as Kullback entropy [16].

5.2 Search Characteristics

Although a stableR s cannot tackle with any kinds of ruggedness, iecal
minima in a landscape, it can lead to better stayeBnding the exits from benches
[26], where each bench is a plateau but not a logaimum in a landscape. Hence
when a stabl® sis used in MAFS, such as VDSR@, the neutrality in a landscape
is mainly exploited by the stabR s rule, while the ruggedness is mainly explored by
the Rys rule under the management of the multiagent fraonkew

Table 6 lists the results of the MAFS versions wdtfferent components iRes,
which are applied to thKs color series. The version #LS.VD is defined byngsthe
VDS as theR s Then three MAFS versions are realized, where eaels a different
component for RE2 : a) #GPP.E, which use®Z, for the Rgpp; b) #GPP.IS, which
usesRE, for theRgpp; and c) #GVR.KF, which useBXE for the Rgyr. Moreover, the
reference algorithm for calculating thevalues is #STD (cf. Table 4).

Table 6. The mean results by MAFS versions in differentdr® XS rules.

Graph Ks #LS.VD #GPP.E| #GPP.IS| #GVR.KK
ps Tm rq/D ps Tm ps Tm ps Tm

DSJC250.5 | 2§0.824 3.84 0.01( 0.68 3.7Q 0.971 2.20 0.7§ 2.59
DSJC500.5 | 4§0.55 15.9 0.009 0.34 14.9 0.8§ 12.3 0.31 7.64
DSJC1000.5| 840.54 46.3 0.00§ 0.35 38.4 0.96 33.4 0.25 21.7
flat300_28 0| 31 0.94 5.34 0.01(¢ 0.75 6.49 1.00 4.13 0.93 2.99
flat1000_76_(B3| 0.51 41.4 0.009 0.22 37.4 0.99 33.6 0.20 23.1
1e450_15c 151.04 0.54 0.03§ 0.89 0.24 1.00 0.14 0.95 0.13
le450_25c 21 1.0¢ 0.5 0.003 1.00 0.54 1.00 0.60 1.0Q0 0.54

I - 10.840 1.74 0.463 0.57 1.57 1.05 1.19 0.5¢4 0.94

Local Search. The advantage of long LS chains is shown in dwilts by #STD.L
(cf. Table 5) and #STD (cf. Table 4), where #STBimply uses a largdr; value for
solving le450_25c, which is able to obtain beethan #STD does. F, L>1
simply means it walks on a plateau at the lastdpsmce it takes stable moves for all
the unfixed vertices with itRS . The advantage of the stable LS using a latger
value clearly indicates the significance of therskan plateaus. Moreover, it implies
that some benches are quite large, thus the leaatis hardly finds the exits.

By comparing the results between #LS.VD (cf. Tabeand #STD (cf. Table 4)
which are realized under two stalites rules, i.e., VDS ancRL, respectively, two
facts are indicated: a) mostnioves are spent on plateaus, maybe in different levels,
according to the quite smailj, values (<0.05) in Table 4 and 6, where eglgives
the ratio of the number of greedynives (Af <0) over that of plateau theves
(af =0); and b) VDS is less efficient in the plateaursbahan RL, since #LS.VD
obtains worsgs and higherfT,, by using a larger ratio of plateaurbves (according



to thatr,=0.463 forry,). Compared with VDSRZ! uses an additional tabu matrix to
restrict the input color lisat the local level, which may forbid many unpromgsi
plateau moves. For LS strategies, there are timte@ive measures of effectiveness
[59]: depth, mobility, and coverage. with the tabu matrix may be efficient in
leading the search to a bettmverage than VDS in consideration of that tldepth
and mobility of both strategies are same on each plateau, vdogeeage measures
how systematically the search explores the entaeau [59].

Recombination Search. The Rys rule, under the management of the multiagent
framework, plays a major role in navigating therskain a rugged landscape,
especially when a stabR s is employed as the low-level strategy in the fasearch.
Specifically, for GCP, the grouping-basg; rule (Rxsg) works on group sets.

The MAFS versions #GPP.E, #GPP.IS, and #STD alizeday simply using the
different Repp rules, i.e.,RE,, RS, and R¥S  respectively. The results in Table 6
show that #GPP.D achieves a much worse performasdie #GPP.IS achieves a
similar performance, when they are compared withBtS

Together withRE, simply leads to &y in a largeVyp size, and then the
Rovr rule can achieve i in the samé&/yp size of theHy,.

Together with eitheRE, or RS leads to a stablely, in a large c-core size
(Vo). Firstly, the c-core of stable group set achiebgdeitherRS, or RS s a
superset of that bRE, . Secondly,RZ can achieve a stabldy, with a largerVec
size if the misleading information from the critiogertices on the group sizes is
excluded. Then thBgyg rule can achieve ;¢ in the samé/ size of the stablel,.

The Rygs rule may prefer to obtaintdy, in a largeVcc size instead of in a large
Vyp Size, so as to achieveth,. in a largeVcc size. Moreover, each parent group set
associated with a high-quality state is preferableave a larg®cc size.

Some advanced methods for improving independent seth as those studied in
the column generation approach [50] andImXRLF [45], may also be used to enhance
the c-core size of a stable group set by applyingettain groups in the group set.

The MAFS versions #GVR.KF and #STD are realizedubing the differenReyr
rules, i.e.,R% and RE&¥, respectively. The results in Table 6 indicatet timsing of
can achieve a better performance tiRifi. Removing a few vertices from a
group allows the group to be evolved locally thriougdding the new vertices
performed by théry, rule. Although each group extracted from a highliqy state
may be rather stable, a large group is not nedgsaasuperset of certain proper color
class. Hence, the advantage of using the unbig&dmight result from thaR:®
allows all the related groups to be evolved, ehenlarge groups.

Decentralized Interaction. Table 7 summaries the results on Eecolor series by
four MAFS versions with a decentralize@,,n,, model at different density values,
whereN,/Np values are 0.2, 0.4, 0.6, and 0.8, respectivellargerN, value means
both a faster diffusion of the local informationdaa slower diffusion of the global
information. Here the reference algorithm in cadtig ther, values is #STD, where
N./Np is 1.0. Table 7 shows that thevalues ofps andT,, for each case are closed to
1 whenN./Np varies from 1.0 to 0.2, meaning the performanceshese MAFS



versions are quite robust, which may be due to gbed balance between the
diffusions of the local and global information hetnetworks.

Table7. The results by MAFS versions fordg in differentN, /Ny values (from 0.2 to 0.8).

N /Np=0.2| N;/Np=0.4| N;/Np=0.6| N;/Np=0.8
pS Tm pS Tm pS Tm pS Tm
280.94 1.84 0.91 2.09 0.87 2.15 0.94 1.8§
48 0.6 11.4 0.80 9.14 0.76 10.§ 0.76 10.4
DSJC1000.5 | 840.99 27.5 0.94 26.4 0.93 28.2 0.93 28.Q
flat300_28 0| 31 0.99 3.39 1.00 3.04 1.00 3.31 1.0Q 3.21
flat1000_76_083| 0.94 30.4 0.92 28.1 0.92 26.9 0.94 25.1
1[
23

Graph [Kg

DSJC250.5
DSJC500.5

le450_15c b 0.9q9 0.14 0.97 0.14 0.9§ 0.14 0.99 0.14
le450_25c /1.0 0.5Q0 1.00 0.5§ 1.00 0.48 1.0Q 0.57
I -10.94 1.04 1.04 1.03 0.99 1.03 1.01 1.0%

As a multiagent model, MAFS may have an advantag¢hé robust parallel
computing, as agents may be designed to locatéfatetht processors in a network.
This may be useful in practice since solving lagggphs is quite time-consuming.

Firstly, MAFS stores declarative knowledge by g of agents and distributed
the knowledge to the nodes, which make the algoritlery robust because there is
not any key node(s) in this case, meaning the nailenot fail occasionally during a
run.. The centralized memory is a typical examla key node, which is required by
many frameworks, such as Immune Algorithms [16]Jatfe Search [37], Genetic
Algorithms [24, 34, 54], and Adaptive Memory Pragraing [31], etc.

Secondly, the communication of each agent is simpBnt on accessing one (or a
few) state(s) memorized by other nodes during daelning cycle. Hence, the
communication cost may be neglected in comparistimtive computation cost.

Thirdly, MAFS may still work well even if the intaction network is sparse, as
indicated in Table 7, MAFS possesses a robust pedoce in the topologies with
variedN/Np values. In a real world, the mode of networksfieropartially connected,
i.e., some connections may be invalid under ceghisical network conditions.

Of course, in order to make MAFS support a comnatioa between the agents in
the real world, more efforts must be employed oa fitnysical infrastructure. In
addition, the current K2+ model is quite artificial, thus more experimentewd be
performed to evaluate its robustness. Another tierésting issues are to analyze the
cooperative solving features of MAFS under varitamlogies [12], and to study if
some of the features may boost the performanceedi@r, non-uniform models [65]
such assmall-world, ultrametric, power-law models, etc., including certain dynamic
topologies, may be worthy further consideration.

PAC Property. MAFS is not necessarily probabilistically apprmostely complete
(PAC) [39], according to the law of bounded ratilityd33] it follows.

However, MAFS can achieve PAC in a simple way.thirsMAFS is PAC if the
Res of any agent is PAC. Secondly, tRg; rule is PAC if: a) itdR srule is PAC; or b)
its Rysg rule is PAC and it& s rule preserves the best state ever found. Thithby,
PAC may be also achieved by some nigtarules. For Example, a meRys rule is
PAC if it is chained by both B srule in PAC and a stabR s rule.



In fact, to find aR s rule in PAC is no difficult. For example, it is®ato prove
that the random walk strategiRE ), i.e., <RZY ,R%, >, is PAC.

At each round, the probability of determining whestla vertex is moved bR
is Vv, /|V |, and the probability of assigning the vertex wétch color by RE, is
1/K. Hence the probability for assigning each vertéth wach color sV, /(|V |K).
For any incumbent state, the probability of achigvia proper coloring is
(Vo /(1Y |E )M, which is larger than zero sind&y>0 and both\| andK are finite
values. HenceR™ is PAC if t - o according to Theorem 2 in Ref. [39], i.any
algorithm which, for any incumbent state, executes a random walk with a probability
of at least larger than O at any given time, is PAC.

6. Conclusions

In this paper, a multiagent fusion search (MAFSpriesented as a realization of a
multiagent optimization framework to solve the dragoloring problem (GCP). A
fusion search includes a recombination search @8king in a navigation role and a
local search (LS) in an exploitation role. In MAF&ch of agents performs the fusion
search with extremely limited knowledge in its meral declarative memory and
cooperates with others through a decentralizeddot®n protocol in the environment,
thus the agents are able not only to explore ialfEibut also to achieve a collective
performance under the law of socially biased irtireil learning.

Compared with some state-of-the-art coloring athans, MAFS is competitive in
both the solution quality and the computationaltcaken applied to some hard
graphs. In addition, MAFS improves the best knoasuits of two large graphs.

In addition, we have investigated the search chariatics of the components of
MAFS. The experimental results show that the Q@iasiu LS and grouping-based
XS strategies are especially useful for tacklinghwieutrality and ruggedness in the
GCP landscape. A simple analysis indicates that BI&&n achieve probabilistically
approximately complete in an easy way. The poteatimantage of the decentralized
interaction protocol in a robust parallel computisgliscussed as well.

Future research is suggested to: a) achieve ab$eglarformance by the agents
with adaptive strategies; b) explore certain coapes problem solving features by
investigating the performances with real-world iatgion protocols; and c) study
MAFS with suitable components to solve other hamhputational problems.
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