
Graph Coloring by Multiagent Fusion Search

Xiao-Feng Xie, Jiming Liu

Department of Computer Science, Hong Kong Baptist University,
Kowloon Tong, Hong Kong, China

xiexf@ieee.org, jiming@comp.hkbu.edu.hk

Abstract. A multiagent fusion search is presented for the graph coloring
problem. In this method, each of agents performs the fusion search, involving a
local search working in a primary exploitation role and a recombination search
in a navigation role, with extremely limited memory and interacts with others
through a decentralized protocol, thus agents are able to explore in parallel as
well as to achieve a collective performance. As the knowledge components
implemented with available structural information and in formalized forms, the
Quasi-Tabu local search and grouping-based recombination rules are especially
useful in addressing neutrality and ruggedness of the problem landscape. The
new method has been tested on some hard benchmark graphs, and has been
shown competitive in comparison with several existing algorithms. In addition,
the method provides new lower bound solutions when applied to two large
graphs. Some search characteristics of the proposed method are also discussed.

Keywords: Graph Coloring, Global Optimization, Multiagent System.

1. Introduction

Let G=(V, E) be an undirected graph, where V is a set of vertices and E is a set of
edges, the graph coloring problem (GCP) is to partition V into K color classes, where
each is a subset of V labeled with same color. For a proper coloring, each color class
forms an independent set, which has no adjacent vertices. GCP is one of the most
notorious models in graph theory: to compute the exact χ of an arbitrary graph
requires the time O(2.4422|V|) [21], and to color a graph with 32 1χχ  + ⋅ −  colors is
still NP-hard [44], where χ is the chromatic number. It also has various applications,
such as timetabling [22], register allocation [62], and some others [4, 32].

The landscape paradigm has been used for search in general [58]. Formally, global
structural information of the optimization task is represented as a landscape [58]
containing two essential ingredients, i.e., the representation space SR and the cost
function ()f s

�
. Each state s ∈

�
SR is associated with a potential solution of the task. The

function ()f s
�

, which is to be minimized, is used for measuring the quality of each s
�

.
The rationale of problem solving is then to find the state(s) with better quality by
moving in the landscape with the search strategies utilizing structural information.

The GCP landscape can be studied from a point of view on its geometric properties
[58] under specified neighborhood structure(s), focusing on the ruggedness, i.e., the

Journal of Combinatorial Optimization, 2009, 18(2): 99-123.

(The original publication is available at www.springerlink.com by DOI: 10.1007/s10878-008-9140-6)

distribution of local minima, and the neutrality, i.e., the existence of plateaus, where
each plateau is a cluster of the neighboring states in the same quality. The strategies
based on local structural information may be strongly fooled by local minima [10].
For GCP, the existence of giant plateaus has been shown [52]. The neutrality becomes
significant when some benches tend to be very large [26], as studied in Satisfiability
Problem [60], where each bench is a plateau but not a local minimum.

Local search (LS) [30, 60, 64], which improves each incumbent state by
neighborhood moves, has been applied to solve various problems successfully. A
search strategy is defined as stable if it only allows the moves from one state to
another with f∆ ≤ 0. Both the greedy (f∆ <0) and plateau moves (f∆ ≡ 0) are stable.
Each stable LS strategy is stuck into the local minimum that it first encounters. Vertex
Descent strategy [34] is a simple example of a stable LS strategy.

Noise strategies [61], which are not stable, allow the LS to make occasional uphill
moves (f∆ >0) to explore a rugged landscape. Typical examples include Random
Walk [11, 47], Tabu Search [38], Simulated Annealing [41], etc. Noises may turn an
incomplete LS strategy into probabilistically approximately complete (PAC) [39]
which achieves an optimum state with a probability one as the run-time approaches
infinity. However, for searching efficiently under a reasonable cutoff time, a strategy
is preferable to exploit problem structural information rather than to perturb blindly.

Recombination search (XS), which generates a state by combining the positive
clues from two source states, utilizes the difference between two source states and
leads to an adaptive leaping [51]. The Graph-Adapted Recombination [24] was
proposed by hybridizing averaging [60] with min-conflicts. For purpose of addressing
permutation symmetry [34, 70], grouping-based XS methods [23], such as Greedy
Partition Crossover [29], Union of Independent Sets [19], etc [22], were proposed.

Fusion search (FS), a concept borrowed from Multi-Step Crossover Fusion [57], is
defined as a chained combination between an XS and an LS. Although FS has the
same interface as XS, the two components in FS have different search roles, where
the XS finds a promising state as an incumbent state of the LS, while the LS locally
improves this state. The idea of FS has been used in practice [24, 29, 34, 60].

Various metaheuristic frameworks have been applied in solving GCP, which use
LS, XS, or even FS as their search components. The examples include Ant Systems
[9], Adaptive Memory [31], Scatter Search [37], Immune Algorithms [16], Genetic
Algorithms [3, 19, 24, 34, 54], etc. In a framework, it is important to manage the
source information efficiently for its search components by facilitating the emergence
of the positive clues as well as maintaining the diversity of information.

Autonomy oriented computing [48] stresses modeling the flexible autonomy of
entities and the self-organization of them for a specific goal. It is possible to preserve
the diversity of the positive clues in the system [15] with a local diffusion effect [68],
especially when each entity possesses its private memory [69]. Moreover, allowing
agents to use memorized information to adjust their behaviors enable us to study more
intelligent agents [46]. Specifically, the compact multiagent optimization framework
[67], which supports the cooperative search by multiple compact agents, has been
applied in solving hard computational problems, such as Numerical Optimization
Problem [67] and Traveling Salesman Problem [68]. As a simple multiagent system
[63], it may have the potentials of parallelism, robustness, and scalability.

In this paper, a multiagent fusion search (MAFS) for GCP is presented. In Section
2, a multiagent optimization framework in general is described to support the
cooperative search by the multiple agents under the law of socially biased individual
learning (SBIL) [28, 69]. In Section 3, MAFS is realized in a simplified way of the
framework, where MAFS not only supports the fusion search for each agent based on
extremely limited declarative knowledge, but also works in a decentralized way. In
Section 4, the knowledge components of MAFS are implemented to address neutrality
and ruggedness of the GCP landscape by utilizing available structural information. In
Section 5, the characteristics of MAFS are studied by performing experiments on
some hard graphs [24, 42]. Finally, this paper is concluded in Section 6.

2. Multiagent Optimization Framework

In order to achieve the goal of finding solution(s) with at least reasonable quality, the
multiagent optimization framework is organized with autonomous entities [49, 69]
that self-organize by manipulating certain knowledge components which are realized
according the internal representation (IR) of task and related world knowledge [55].

The framework consists of NP active entities, called compact agents, and a daemon
entity, called environment (ENV) [66]. For simplicity, the agents are homogenous in
the sense that they have the same organization structure. Each agent has an ability to
generate new states in SR by manipulating available knowledge based on simple rules
[69]. Moreover, agents achieve a collective performance through interacting with
each other according to the interaction protocol (IP) under the support of ENV.

2.1 Basic Concepts

The internal representation (IR) encapsulates the primary knowledge related to the
optimization task, which contains global structural information, i.e., the landscape
[58], and related local structural information. Using the landscape is quite general in
solving hard computational problems [58]. Local structural information may reduce
the local computation efforts and may lead the search into the promising directions.

The general problem solving capability emerges from an interaction of declarative
and procedural knowledge [1, 55]. Declarative knowledge is represented in symbol
structures called chunks, and procedural knowledge is represented in elementary
information processes called rules. All required knowledge elements are instantiated
according to the IR and related world knowledge, where only the knowledge elements
using local structural information are regarded to be strongly problem-dependent.

Each chunk is a certain declarative data structure containing a meshed set of
patterns [20, 35], and the content of a chunk is designated by its name. Each rule is
represented as

I_NAME
I_KEYR

[68]. The subscript I_KEY designates a high-level interface

used for handling with specific input/output parameters, where each parameter is
either a knowledge element or a simple data type, and the superscript I_NAME
designates the low-level realization. Each knowledge element may have specific
setting parameters, where the value of each parameter can be tuned before a run.

2.2 Compact Agent

A compact agent is a socially situated autonomous entity [49, 69] capable of making
decisions for itself which is subject to limitations of available knowledge.

Each agent has two declarative knowledge sources. Firstly, it possesses a long-term
memory called MA for supporting individual learning. Moreover, at least one of the
chunks in MA is publicly accessed by the external world [49]. Secondly, it refers to an
equivalent social memory (MSE), which is owned by ENV and contains the chunks for
achieving socially biased learning [25, 28]. Moreover, the agent possesses a private
buffer memory called MG for temporarily holding the newly generated chunks.

Each memory is defined by the chunks it possesses, where each chunk aggregates
certain particularities of the landscape. Moreover, each chunk in memory is updated
[35] by its owner only. Typical examples of a chunk in a memory include a state in
SR, a state set [29, 68], or a special data structure, such as an ensemble of independent
sets [31], a pheromone matrix [7], a state in priority space [43], etc.

The search capability in the landscape is achieved by the generate-and-test rule
(RGT) [18, 69], which contains a generating part (RG), a testing part (RT), and a
solution-extracting part (RS) [68]. The law of behavior is socially biased individual
learning (SBIL) [25, 28, 69], as a fast-and-frugal heuristic in bounded rationality [33],
which is adopted by many species for adapting in the real world with limited time and
resource and is a mix of reinforced practice of individual experience and social
influence. First, according to the current chunks in MA and MSE, the RG generates new
chunks and stores them into MG immediately. Afterwards, based on the chunks in MG,
the RT updates MA, and the RS extracts inclusive valid states and exports them to ENV,
respectively. The RS has no influence on the solving process and is thus realized in the
simplest way. If without loss of generality, the RT only produces reflex behaviors that
may determine certain nontrivial properties of the chunk(s) in MA [67].

2.3 Environment

The environment (ENV) [48] is a daemon entity providing background supports for
the cooperation among the agents by encapsulating available resources, even may
include the physical infrastructure [66], if necessarily. Here ENV plays two roles.

First, it holds a solution-depositing module, which is simply realized by storing the
best-quality state of all the states that are exported by the RS of all agents.

Secondly, it manages resources and services [66] for all the agents. Such as, a) it
constructs the initial contents of chunks in MA of all the agents with the memory-
constructing rule (RINI); and b) it organizes the corresponding MSE for all agents based
on the available declarative knowledge through the interaction protocol (IP).

2.4 Working Process

The framework is initialized at t=0. All the NP agents are constructed, and the RINI rule
is executed to construct the chunks in MA for all agents. Then states are extracted from
such chunks by RS and are submitted to the solution-depositing module in ENV. Then
all the knowledge components, including the IP in ENV, are instantiated.

The framework runs in iterative learning cycles. By running in a Markov chain, the
system behavior in the tth ([1,]MAXt T∈

ℤ
) cycle only depends on the system status in

the (t-1)th cycle, where TMAX is the maximal number of cycles. The learning process is
terminated as if the proper solution is found, or if the condition t ≡ TMAX is satisfied.

Moreover, each cycle contains two sequential clock steps: the C_RUN step and the
C_POST step. The RG rule is executed at the C_RUN step, and the RT and RS rules are
executed at the C_POST step. The using of the two synchronizing steps simply
ensures the environment being unchanged during a generating process for all agents.

At each cycle (t>0), all the agents are activated in turn. The socially biased learning
process by the ith activated agent in the tth cycle can be represented as:

(1)
()(C_POST)() () ()

() () ()(C_RUN)

(C_POST)

,
{ } ENV

T

G

S

R t
A iRt t t

A i SE i G i R

M
M M M

s

+→→ 
→ →

�

(1)

where each ()
()

t
SE iM is organized by the IP in ENV. Moreover, the chunks in

()
()

t
G iM will

be cleared at the end of such a learning process.
At the end of each cycle, if necessarily, the information related to ENV is updated.

2.5 Summary

In summary, the framework is represented as a tuple, i.e., <IR, TMAX, NP, MA, MG, MSE,
RG, RT, RS, RINI, IP>, where both TMAX and NP are simple parameters.

Given a known IR, the three types of memories, including MA, MG, and MSE, can be
specified in advance according to the names of chunks that each memory possesses,
although the contents of chunks have to be varied during the runtime.

The other knowledge components can be specified rather independently through
using different memories. For each agent, RINI simply uses MA; RS only depends on
MG; RT works on both MA and MG; and RG employs all the three available memories.

For ENV, IP accesses the chunks in MA shared by all agents, and then organizes
MSE for every agent. Hence, IP may be realized in a quite sophisticated way, if
necessarily. However, simple implementations are often considered, if possible.

The number of setting parameters in such a framework is not necessarily large
since many of the knowledge components may have none or few parameters. In
addition, in order to focus our studies on certain interesting components, we may fix
many components in the simple forms. Those components with no variety, e.g., the
solution-depositing module in ENV, are out of our further concentration.

3. Multiagent Fusion Search (MAFS)

The MAFS is an optimization system realized by using simple forms of knowledge
components in the multiagent framework. It has three main features.

Firstly, memories are specified with extremely limited declarative chunks. MA and
MG both contain one state in SR, which are called ()t

As
�

 and ()t
Gs
�

, respectively, where
()t
As
�

 is publicly accessed by ENV since it is the only one chunk in MA. MSE holds an
equivalent state set called()t

SEX , which refers to a set of states.

Secondly, a decentralized IP is considered for supporting the interactions between
the agents. This is important, as in the real world, animals may observe neighbors for
achieving socially biased learning [25, 28], which leads to a cumulative evolution of
knowledge that no single individual could invent on its own [2]. This IP employs a
directed network topology model (IPNET). Each agent is associated with one node in
the network, and the node stores a reference of the publicly opened knowledge in MA
of the agent. A directed connection from the node A to B indicates that the agent B
can use the referenced knowledge of the node A. For each agent,

()t
SEX contains all the

referenced chunks of the nodes connected to the node associated with it, which is a
subset of ()t

SX ={ ()
()
t

A is
�

| [1,]Pi N∈
ℤ

} and may be different for different agents.
Thirdly, in order to formalize some well-studied LS and XS strategies and to study

certain novel strategies, RG is realized in a tuple <RSP, RFS>, where RFS=RXS+RLS is the
fusion search (FS), and the state-picking rule (RSP) serves as a simple knowledge lens
[20] to choose one state from

()t
SEX as the input information of RFS. The chaining

operator (‘+’) indicates that the recombination search rule (RXS) and the local search
rule (RLS) are chained, i.e., the output of the former rule RXS is exactly the input of the
latter rule RLS. The fusion is a concept borrowed from Multi-Step Crossover Fusion
[57], which is actually an XS strategy designed with an extension of a LS strategy.
Moreover, RFS may be understood as a special RXS in consideration of the same
input/output parameters of them, which possesses two components in different search
roles: the RLS rule playing a primary exploitation role and the RXS rule working in a
navigation role to find a promising state as the incumbent state for the RLS.

To provide a straightforward understanding, Figure 1 shows the pseudo code of
MAFS from the viewpoint of a population-based optimization algorithm, where all
the knowledge publicly accessed by the IPNET in ENV, i.e., ()t

SX ={ ()
()
t

A is
�

| [1,]Pi N∈
ℤ

},
corresponds to a virtual population of states, although

()
()
t

A is
�

 is actually located in MA
of the ith agent. For each agent, ()t

SX is at least transparent to it, since it simply refers
to ()t

SEX , which is organized by the IPNET model. Moreover, because each agent shares
all its declarative knowledge in MA with the external world, (0)

SX can represent the
knowledge to be constructed by RINI into the memory MA of all agents.

At the C_RUN step, the RG rule of each agent works in the following steps: 1) two
states ()t

bases
�

 and
()t
refs
�

, are chosen from the input information, where
()t
bases
�

= ()t
As
�

 and
()t
refs
�

 is a state picked by the RSP from
()t
SEX ; b) the RXS part of RFS generates one child

state called ()t
incs
�

 by using both ()t
bases
�

 and
()t
refs
�

 as the parent states; and c) the RLS part
of RFS further improves ()t

incs
�

 and finally stores it as
()t
Gs
�

 in MG.
At the C_RUN step, The RT rule of each agent replaces

()t
As
�

 by
()t
Gs
�

 according to a
specific criterion. The RS rule is not mentioned in Figure 1 since it simply exports

()t
Gs
�

 to the solution-depositing module in ENV.
In MAFS, the two parent states of RFS serve different roles, especially in

consideration of the multiple cycles in a run. Under the law of SBIL, the parent
()t
bases
�

always uses the
()t
As
�

 in MA of each agent as its input and the state generated by RFS is
always the candidate of

(1)t
As +� , while the parent

()t
refs
�

 uses a state from ()t
SEX as its input

in a stochastic way. Hence, RFS may be interpreted from a viewpoint of a guided local
search process, where

()t
As
�

 serves as an incumbent state to be improved and the state
which is picked from

()t
SEX serves as the guiding information.

In the multiagent framework, since each agent possesses its own long-term
declarative memory, it is possible to preserve the diversity of positive clues in the
system. By utilizing their individual experiences, the agents are able to explore in
parallel, which may significantly increase the probability of escaping from local
minima in the rugged GCP landscape. With RXS, the agents are facilitated by the
social influence of IPNET, thus achieve a collective performance searching faster than
they work independently. In addition, usage of RLS in the FS is important in obtaining
good states, especially when some benches in the GCP landscape are huge.

Data: IR(G, K) /* graph: G=(V, E), color number: K */
% NP, TMAX /* simple setting parameters */
% RSP, RXS, RLS, RT, RINI, IPNET /* knowledge elements: instantiated by IR */
Result:

*s
�

(the best state found) /* held by solution-depositing module in ENV */
begin
│ t=0 /* initialization stage */
│ (0)

SX =RINI(IR) /*
()t
SX ={ ()

()
t

A is
�

| [1,]Pi N∈
ℤ

} , ()
()
t

A is
�

belongs to the ith agent */
│ *s

�
=best(IR, (0)

SX) /* best(IR, (0)
SX): returns the best state in

(0)
SX */

│ while (t<TMAX and *()f s
�

>0) do /* termination criteria */
│ │ t=t+1 /* iterative cycles */
│ │ for i=1 to NP, do /* C_RUN step, for the ith agent */
│ │ │ ()

()
t

SE iX = IPNET(IR, ()t
SX) /* organizes ()

()
t

SE iX by IPNET */
│ │ │ ()t

bases
�

= ()
()
t

A is
�

, ()t
refs
�

=RSP(IR, ()
()

t
SE iX) /* filters input information */

│ │ │ ()t
incs
�

=RXS(IR, ()t
bases
�

, ()t
refs
�

) /* performs recombination search */
│ │ └ ()

()
t

G is
�

=RLS(IR, ()t
incs
�

) /* refines ()t
incs
�

 and stores it as ()
()
t

G is
�

in MG */
│ │ for i=1 to NP, do /* C_POST step, for the ith agent */
│ │ │ (1)

()
t

A is +� =RT(IR, ()
()
t

A is
�

, ()
()
t

G is
�

) /* determines which state is
(1)
()
t

A is +�
 */

│ └ └ if (() *
()() ()t

G if s f s<
� �

) then *s
�

= ()
()
t

G is
�

 /* stores ()
()
t

G is
�

as
*s
�

 if it is better */
end

Figure 1. Pseudo code of MAFS from the viewpoint of a population-based algorithm.

In summary, MAFS can be represented as a tuple, i.e., <IR, TMAX, NP, RSP, RXS+RLS,
RT, RINI, IPNET>. All its components can be realized in a rather decoupled way since
the memory specification is known. Moreover, many of its components may be not
strongly problem-dependent if they do not use any local structural information. For
example, the IPNET model may not utilize any structural information, or both RSP and
RT are suggested to only use (or even not use) the global structural information of IR.

4. The Implementation for GCP

The implementation of the knowledge components in MAFS is especially focused
on RXS and RLS, because they play the major roles in tacking with neutrality and
ruggedness of the GCP landscape in the multiple cycles of a run, although RINI, which
constructs the totally NP states at t=0, may also utilize local structural information to
facilitate the search process through providing a good starting status, if necessarily.

Formalized forms are used to realize the rules of RLS and RXS, which is important
not only in stressing the difference between various realizations, but also in leaving
certain flexibility to develop novel variants locally.

4.1 Internal Representation (IR)

The primary input information of the graph coloring problem (GCP) contains both the
graph, i.e., G=(V, E), and the number of available colors, i.e., K.

Normally, a preliminary data structure, i.e., the string-based assignment (s
⌢

) [23],
is considered. Each s

⌢
 has |V| elements, where each element corresponds to a vertex

and can be assigned a color value. An assigned vertex is called critical [30] if its
violation number (vio), i.e., the number of vertices within the same color class that are
adjacent to the vertex, is larger than 0. The number of assigned vertices is called VA. A
configuration is then defined as a complete assignment with VA ≡ |V|.

For the GCP landscape, each configuration is a state s
�

∈ SR, where SR is an integer
representation space with s(j) [1,]K∈

ℤ
 for [1,| |]j V∀ ∈

ℤ
, s(j) is the color of the jth vertex

of s
�

. The cost function is
| |

1
() (,) 2V

j
f s vio s j==∑
� �

, where (,)vio s j
�

≥ 0 is the violation
number of the jth vertex. Then an optimal solution is a state

*s
�

 that satisfies *() 0f s ≡
�

,
which means all its vertices are not assigned in the critical status.

The local structural information relies on the adjacency matrix. Any of edge in E
which has two adjacent vertices ja and jb are described with the TRUE values at the
two corresponding entries (ja, jb) and (jb, ja) in the Boolean |V|× |V| matrix.

An assignment s
⌢

 can be simply constructed with some heuristics which utilize the
local structural information from the adjacency matrix involving the distribution of
node degrees [65], most-constrained vertices [45], etc. Examples of these heuristics
include DSatur [8], XRLF [41], lmXRLF [45], etc.

Moreover, each assignment s
⌢

 with VA<|V| can be constructed into a state s
�

∈ SR

by a vertices-assigning rule (RVA). Each unassigned vertex is assigned a randomly
chosen color [29] by the randomizing RVA rule (R

VAR) and a color with the minimal
violation number by the min-conflicts RVA rule (MC

VAR) [24, 37].

4.2 Local Search

A local search strategy (LS) tries to achieve improvement on an incumbent state with
certain neighborhood moves. For GCP, as one of the representative models of
Constraint Satisfaction Problems [47], LS strategies based on 1-moves [30] are often
considered, since 1-moves can be significantly speeded up by associating each state s

�

with a violation table [47]. Here a 1-move changes the color of a single vertex in the
incumbent state. In addition, 1-moves possess the connectivity property [56], i.e., there
exists a finite sequence of such moves to achieve the optimum solution from any valid
state. Many sophisticated moves, such as Kempe chain [41], Shuffle [27], etc., can be
represented by a finite sequence of 1-moves.

For GCP, the violation table is simplified as a |V|× K violation matrix Vγ , in which
each entry (,)V j kγ ≥ 0 ([1,| |]j V∈

ℤ
, [1,]k K∈

ℤ
) is the number of vertices within the

kth color class of s
�

 adjacent to the jth vertex. The initialization of such a matrix
takes the time complexity (| |)O V K⋅ . Each delta value f∆ = ()(,) (,)V j V xj s j kγ γ− can
be obtained in constant time before the color of the jth vertex changes from s(j) to kx. If
a 1-move is actually performed, both columns s(j) and kx of the matrix are updated,
where the updating takes (| |)O V . The matrix Vγ is not the same as the matrix ∆ [24],
in which entry (,)j k∆ represents the effect of changing the color of node j to the color
k, where the initialization takes

2(| |)O V K⋅ for and each 1-move takes (| |)O V K⋅ .
For the purpose of representing various RLS strategies in formalized forms, three

hierarchical levels are used, i.e., a) the local level (RLSL), b) the round level (RLSR), and
c) the meta level, if necessarily. A basic RLS strategy can be achieved by a tuple <RLSL,
RLSR>. A meta RLS strategy can then be achieved by chaining certain RLS strategies
being on the same incumbent state. For a basic RLS, it is stable if its RLSL only allows
stable moves. For a meta RLS, it is stable if all its component RLS strategies are stable.

For convenience, the best state found so far by the RLS rule is called *s
�

, which is
recorded only when a LS strategy is not stable.

The local level. The RLSL decides a destination color for 1-move at each vertex. Here a
color list (Γ) contains certain colors. For the jth vertex, the color is randomly
selected from a candidate color list corresponding to the input ()jΓ with the current
color s(j) excluded. The vertex is defined as fixed if the candidate color list is empty.

With the violation matrix Vγ , one simple way is to define an input color list is by
utilizing (,)V j kγ values. For example, the least-violation ()jΓ , i.e., ()LV jΓ , contains
all colors with the minimum violation value of the jth vertex.

The 1-moves can be further guided by using a |V|× K tabu matrix [38]. If a 1-move
leading to a state no better than *s

�
 is performed, then its original color is declared as

tabu for a certain number of such 1-moves (called tabu tenure). The tabu tenure is
calculated as () CU A Vα+ ⋅

ℤ
[29], where U

ℤ
(A) returns an integer value selected in [0,

A-1]
ℤ

 at random and VC is the number of the critical vertices in the current s
�

. The
default values of A and α are 10 and 0.6, respectively [29]. Here the second part, i.e.,

CVα ⋅ , provides a self-adaptive scheduled neighborhood selection; and the first part,
i.e., U

ℤ
(A), introduces certain fluctuation into such scheduled process.

For the input ()jΓ , the random walk RLSL (RW
LSLR) uses the list of all possible colors;

the least RLSL (L
LSLR) uses the list ()LV jΓ ; and the Quasi-Tabu RLSL (

QT

LSLR) uses the list

()LV jΓ ∩ ()NT jΓ , where the non-Tabu ()jΓ (()NT jΓ) is defined as all the colors that are
not in tabu status of the jth vertex. Both L

LSLR and
QT

LSLR only allow stable moves.

The round level. The RLSR executes RLSL on selected vertices in a specified order
during a round. The minimal-critical RLSR (MC

LSRR) selects a 1-move with the maximum
deduction of ()f s

�
 by examining all critical vertices [29]. The systematic RLSR (SYS

LSRR)
[34] takes each unfixed vertex in turn, and performs each 1-move based on a specified
RLSL rule. The probabilitistic RLSR (P

LSRR) takes each vertex in turn, and then performs
the 1-move on the vertex selected with a probability of VRW/|V| ((0,| |]RWV V∈

ℝ
).

The meta level. This level manages one or more RLS strategies into a meta LS strategy.
One simple way is to combine different RLS strategies by using the chaining operator.

In addition, the local cutoff criterion (RCCL) is often considered, where one RLS rule is
executed in multiple rounds. Generally, the execution of RCCL is always terminated if
all vertices are fixed during a round. Specifically, the deterministic RCCL (D

CCLR) also
terminates the search in exactly LC rounds [29]; while the improvement-based RCCL
(I

CCLR) also terminates if no further improvement on the *s
�

 occurs for LI rounds [11,
34]. In the case that large plateaus exist in the GCP landscape, it is difficult in
assuring if a local minimum is actually reached even as LC>1 or LI>1.

The Instances. The random walk strategy (RW
LSR) can be represented by a tuple

< RW
LSLR , P

LSRR >. The Vertex Descent strategy (VDS) [34] can be represented as <<L
LSLR ,

SYS
LSRR >, I

CCLR >. The Quasi-Tabu strategy (QT

LSR) is defined as << QT

LSLR , SYS
LSRR >, I

CCLR >.
As an intermediate version between VDS [34] and Tabucol [38], QT

LSR is not
completely new since it inherits the traits from both of them. However, as an essential
difference from Tabucol,

QT

LSR is a stable strategy, which may be terminated early if
all its vertices are fixed during a round due to the restriction of the tabu matrix. The
tabu matrix is updated only while 1-move is searching in a plateau. As same as VDS,
it cannot escape from the local minimum it first encounters. But it may be more
efficient in finding the exits from benches by utilizing the tabu matrix.

4.3 Recombination Search

The grouping-based RXS (RXS:G) is a RXS rule based on the grouping method [19, 23,
29, 37]. Here a group set (H) is defined as a set of K groups, where each group
contains a set of vertices. By using groups, the permutation symmetry [34, 70], which
has massive redundancy (≡ K!) for labeling the colors, can be broken naturally.

The numbers of the total and the distinct vertices in an H are called VHT and VHD,
respectively. Then an H with VHT ≡ VHD is defined as a simplex H, where each of its
vertices only exists in one group. Each assignment, and hence each configuration
state, has an equivalent simplex H by simply taking each color class as a group. A
stable H is defined as an H that each of its groups is an independent set (IS).

For the rugged GCP landscape, it has been suggested that good states may contain
a fairly robust ‘core’ [34]. The exact core, or called backbone [70], may not exist in a
meaningful size due to the existence of giant plateaus which contain the majority of
solutions [52]. The “big valley” hypothesis [5, 57, 70], which has been validated in
many hard computational problems, suggests that better local minima tend to have
smaller distance from the closest optimum by sharing common partial structures. For
GCP, such partial structures may be associated with groups in a certain way.

The concept of complex core (c-core) is introduced here: each H has one exactly c-
core, i.e., a stable group set defined as a subset of the H where all its critical vertices
are excluded. For each H, its c-core size (VCC) is the VHD of its c-core and is not larger
than the VHD of the H. The c-core of each stable H is exactly the stable H itself.

In order to navigate in the rugged landscape, the basic principle of realizing a RXS:G
rule is to combine the positive partial structures associated with the parent states as
well as to allow the adaptive leaps into new local valleys. Formally, there is

RXS:G=<RGPP, RGGP, RGVR, RVA>, which contains four parts working in sequential steps.
First, two source states

()t
bases
�

 and
()t
refs
�

are translated into two equivalent group sets

Hbase and Href, respectively. The three early parts, i.e., preprocessing (RGPP), group-
picking (RGGP), and vertices-removing (RGVR), which generates a simplex H called Hinc
by operating on the two parent group sets, i.e., Hbase and Href. Afterwards, the Hinc is
translated back into an equivalent assignment. In the last step, the assignment is
constructed into a state

()t
incs
�

, by a vertices-assigning (RVA) rule (see Section 4.1).

Preprocessing. The RGPP preprocesses each input H of Hbase and Href into a group set
containing suitable positive clues. The equivalent RGPP (E

GPPR) returns the original
input H [23, 29]. The IS RGPP (IS

GPPR) reduces each group in the H into an independent
set (IS) by removing each critical vertex with a maximum number of neighbors in the
group [19, 37]. The MIS RGPP (MIS

GPPR) further expands each IS into a maximum IS [21]
by inserting each of the vertices with a minimal number of neighbors in the IS [31].

Either IS
GPPR or

MIS
GPPR transforms each input H into a stable one. Moreover, the H

outputted by IS
GPPR is a subset of the input H and a subset of the H outputted by MIS

GPPR .
The VCC size of the group set outputted by

IS
GPPR is not smaller than that by

E
GPPR

since certain vertices in the input H may no longer be critical as other critical vertices
are removed, and the VCC size by MIS

GPPR is obviously not smaller than that by
IS

GPPR .

Group-Picking. The RGGP generates the group set HM by picking out K groups from
the both parent group sets, i.e., Hbase and Href. The alternate-greedy RGGP (AG

GGPR) for
picking out each HM(k) is achieved by two steps. The first step is to select one parent
as the target, called HT. Here it is achieved by selecting one of them alternately [29].
The second step is to pick out a group in HT as the HM(k). Here the element HT(x) with
maximal size of (1) (1) ()| (...) |M M k T xH H H−∪ ∪ ∪ is picked out as the HM(k) [29].

AG
GGPR aims at achieving a HM with two features: a) the HM has an enough distance

from the both parent group sets Hbase and Href, thus it allows adaptive leaps into new
local valleys, which has been used by algorithms [51] in exploring the “big valley” [5,
57, 70] in a rugged landscape; and b) the HM has a large VHD size. If both parents are
stable group sets, HM is also a stable H, thus the VCC size of HM is also large.

Vertices-Removing. The RGVR achieves a simplex H, called Hinc, by removing all
redundant vertices in the HM, where Hinc is a subset of HM and has a same VHD size as
HM. For each vertex existing in multiple groups, the first-keeping RGVR (KF

GVRR) only
keeps the vertex in the HM(k) with the smallest k value [29]; while the random-keeping
RGVR (KR

GVRR) keeps the vertex in a group selected at random.
It is rational that Hinc has a large VCC size, thus Hinc will benefit given HM has a

large VCC size. If HM is a stable H, then every potential Hinc has the same VCC size.

The Instances. The grouping-based method itself and its parts have been studied in
recent years, especially the greedy partition crossover (GPX) [29] and its variants. For
example, GPX can be represented as <E

GPPR ,
AG

GGPR ,
KF

GVRR ,
R

VAR >. Moreover, MIS
GPPR has

been applied to the independent sets in the adaptive memory [31], and both
IS

GPPR and

MC
VAR have been considered in another generalized version [37].

The standard version of grouping-based recombination (:
STD

XS GR) is defined as < MIS
GPPR ,

AG
GGPR ,

KR
GVRR ,

MC
VAR >, which differs from the previous methods in at least two parts and

the part KR
GVRR is a novel one. Together with

MIS
GPPR ,

AG
GGPR and

KR
GVRR work on stable group

sets to generate a simplex group set with a large c-core size in an unbiased way.

4.4 Standard MAFS Version

Formally, the standard version of MAFS, called #STD, can be represented as a tuple,
i.e., <IR, TMAX, NP,

R
SPR , :

STD
XS GR + QT

LSR ,
D

TR ,
DS

INIR , (,)P LN NG >. Other MAFS versions are
then defined by applying the corresponding modification(s) to #STD.

(,)P LN NG is defined to describe a static IPNET model: each node has NL nodes
connecting to it, where the NL nodes are randomly selected at t=0 and all the
connections are directed and static in a run. In the case that NL ≡ NP, because the
topology is fully-connected, (,)P LN NG is equivalent to the centralized memory [68].

The randomized RSP rule (R
SPR) picks out a state from ()t

SEX at random. The directly
RT rule (D

TR) replaces ()t
As
�

 by
()t
Gs
�

 directly, thus the ()t
As
�

 in MA of an agent is the
most recently state generated by the agent itself.

The
DS

INIR rule constructs the total NP states by three steps: a) to construct an
template assignment [29], called Ts

⌢
, corresponding to the first K color classes found

by Dsatur [8]; b) to generate each s
�

 with
R

VRR base on the Ts
⌢

 [29]; and c) to improve
each generated s

�
 immediately with QT

LSR .
By default, the parameters are NP=25 and LI=50 for the I

CCLR of
QT

LSR , respectively.
TMAX is fixed as 500. In addition, there is NL ≡ NP for the (,)P LN NG by default.

5. Experimental Results and Discussions

The characteristics of MAFS are investigated by the experiments on the hard graphs.
There are two main indices for measuring the performance of an algorithm. The

first is the solution quality, which is the probability to find one solution for given K,
called ps (ps [0,1]∈

ℝ
). The larger is the ps, the better the performance. The ps can be

estimated with NS/NR, where NS is the number of satisfied trials that achieve proper
coloring, and NR is the number of trials. All average results are evaluated with the
satisfied trials. The second index is the computational cost. In the comparison of the
algorithms across different platforms and reducing unnecessarily impacts caused by
the low-level details, it is often preferable to use representative operation counts, or
called run-length, is preferred to be used for reducing unnecessarily impacts caused
by the low-level details rather than the CPU time, as the first is a more platform-
independent measure of the computational cost of an algorithm [40]. RLS and RXS both
execute major computations in multiple cycles. In this paper, Tm (×106) is the count of
1-moves and NX= R PT N⋅ is the count of RXS operations, where TR is the cycles taken
to reach the last improvement. The smaller are the Tm and NX, the better the
performance. In solving GCP, the run-length is characterized by Tm because 1-moves

consume much more computational time than RXS operations, where Tm is huge.
Therefore, the performance indices can be simplified as a tuple, < ps, Tm>.

5.1 Basic Performance

The random graphs with a density d=0.5 is a traditional class of benchmark instances.
Table 1 lists the mean results of 10 trials by #STD for both the 100-node (gcol01-
gcol20) and the 300-node (gcol21-gcol30) instances, which are available from the
OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/colourinfo.html). For each
instance, ps, Tm and TR are reported for the color K. The value K denotes the smallest
number of colors needed for which each instance can be colored without a failure.
The results show that all the 100-node instances can be solved with short TR values.

Table 1. Mean results on random graph instances with d=0.5 by #STD of MAFS.

Graph K ps Tm TR Graph K ps Tm TR Graph K K ps Tm TR
gcol01 15 1.00 0.011 0.6 gcol11 15 1.00 0.009 0.1 gcol21 33 32 0.70 3.867 186.6
gcol02 15 1.00 0.011 0.8 gcol12 15 1.00 0.017 2.1 gcol22 33 33 1.00 2.018 72.0
gcol03 15 1.00 0.020 2.7 gcol13 15 1.00 0.011 0.1 gcol23 33 32 0.70 2.611 104.7
gcol04 15 1.00 0.017 1.4 gcol14 15 1.00 0.038 7.8 gcol24 33 32 0.20 3.896 160.5
gcol05 15 1.00 0.011 0.0 gcol15 15 1.00 0.022 3.6 gcol25 32 32 1.00 3.858 143.7
gcol06 15 1.00 0.017 2.2 gcol16 15 1.00 0.012 0.4 gcol26 33 32 0.10 1.275 84.0
gcol07 15 1.00 0.014 0.5 gcol17 15 1.00 0.026 5.2 gcol27 32 32 1.00 3.087 126.5
gcol08 15 1.00 0.012 0.2 gcol18 15 1.00 0.012 0.5 gcol28 33 32 0.10 4.613 225.0
gcol09 15 1.00 0.009 0.1 gcol19 15 1.00 0.031 5.3 gcol29 33 32 0.10 2.873 130.0
gcol10 15 1.00 0.018 2.4 gcol20 14 1.00 0.028 6.6 gcol30 33 33 1.00 2.030 69.7

Table 2. Average results on random graphs with d=0.5 by Tabucol [38], GLS [24] and #STD.

|V| Number of Graphs χɶ KM from [38] KM from [24] K from [24] KM K K

100 20 16 16 15 14.95 15 14.95 14.95
300 10 35 35 34 33.5 33 32.8 32.2

Table 2 summarizes the average results reported by Tabucol [38], by the genetic
algorithm hybridized with a local search (GLS) [24], as well as those obtained by
#STD, where χɶ is a probabilistic estimation of the chromatic number of a group of
graphs [24]. The value KM denotes the smallest number of colors for which all graphs
of the same |V| can be colored with ps=100%. Both the algorithm from [24] and #STD
find smaller KM than Tabucol for the 100-node graphs. Moreover, for the 300-node
graphs, #STD achieves better results than the both previous algorithms [24, 38] for
both KM and K , while the average K is even smaller than the averageK .

For further demonstration of the performance of MAFS, totally 20 representative
challenging instances are selected from a mixed set of both DIMACS [42] and
COLOR04 (http://mat.gsia.cmu.edu/COLOR04/) graph instances, where C2000.5 is a
large graph from the clique part of the DIMACS Challenge. Some easy graphs are
excluded, such as: a) the graphs that can be reduced into trivially [10, 11], such as

games120, Book (5 graphs), Miles (5 graphs), and MIZ graphs (4 graphs); or b) the
graphs that can be solved efficiently by simple heuristics including DSatur [8] and
XRLF [41], such as MYC (5 graphs), REG (14 graphs), CAR, and most Queen
Graphs, which may due to 1-perfect [13] or the distribution in node degrees [65].

Table 3. Results on challenging graph instances by #STD and some existing algorithms.

Graph |V| d K* K ps Tm TR DS XR TC IG SI MIPS ILS AMA IA ABA

abb313GPIA 1557 0.04 9 9 1.00 19.3 22.0 11 12 9 11 9
ash958GPIA 1916 0.01 4 4 1.00 6.35 5.90 6 5 4 6 4
C2000.5 2000 0.50 162 150 0.60 70.9 410 188 165 162
DSJC125.5 125 0.50 17 17 1.00 0.29 51.2 21 18 18 17 17 17 17 18 17
DSJC250.5 250 0.50 28 28 1.00 2.00 110 38 29 28 32 28 28 28 28 28 29
DSJC500.5 500 0.50 48 48 0.80 7.70 173 67 50 49 57 49 49 50 48 50
DSJC1000.5 1000 0.50 83 84 0.90 31.8 296 114 86 89 102 89 88 90 84 91
DSJC1000.9 1000 0.90 224 223 0.40 17.8 285 297 232 228 227 224 229
DSJR500.1c 500 0.97 85 85 1.00 1.77 8.70 87 91 85 85 85 86 85
flat300_26_0 300 0.48 26 26 1.00 0.10 20.2 41 33 36 26 26 26 26 27 26
flat300_28_0 300 0.48 31 31 1.00 2.49 103 41 33 32 35 31 31 31 31 32 31
flat1000_50_0 1000 0.49 50 50 1.00 0.86 53.5 112 84 50 50 50 88 50 50
flat1000_60_0 1000 0.49 60 60 0.50 1.97 222 113 87 100 60 60 89 60 60
flat1000_76_0 1000 0.49 83 83 0.90 27.0 280 114 87 87 102 89 87 89 84 84
latin_square_10 900 0.76 98 104 0.20 109 235 126 117 105 98 99 103 104 100
le450_15c 450 0.17 15 15 1.00 0.13 7.10 24 19 16 25 15 15 15 15 15 15
le450_25c 450 0.17 26 27 1.00 0.52 0.40 29 27 26 26 26 26 26
qg.order100 10000 0.02 100 100 1.00 0.49 0.00 103 100 100 100
queen16_16 6320 0.19 17 18 1.00 0.03 0.00 21 17 18 17 18
school1_nsh 352 0.31 14 14 1.00 0.08 0.20 15 19 14 20 14 14 15 14

Table 3 summaries the results on the challenging graph instances by #STD of
MAFS and existing algorithms. For each graph, |V| is the number of vertices, d is the
density, and K* is the best-known color size. For #STD, NR=10 trials are run, then the
mean results of ps, Tm, and TR are reported for the K. It also summaries the best color
sizes achieved by some existing algorithms, including DSatur (DS) [8] tested in [31],
XRLF (XR) [41] tested in [11], Tabucol (TC) [38] tested in [29], iterated greedy
algorithm (IG) [14], S-IMPASSE (SI) [53], iterated local search (ILS) [11], minimal-
state processing search (MIPS) [27], adaptive memory algorithm (AMA) [31], immune
algorithm (IA) [16], and ant-based algorithm (ABA) [9]. Bold face indicates that the
color size is not worse than K*. It shows that #STD is competitive to the state-of-the-
art algorithms in achieving K*. It is impressive that #STD obtains new K results for
two large graphs in high densities, i.e., C2000.5 and DSJC1000.9. It also shows that
qg.order100 can be solved only by the stable LS in the stage of initialization. For
latin_square_10, MAFS is not very efficient, which may due to the additional
symmetry that all the vertices are in the same degree.

For all the following experiments, NR=100 trials are run for each case so as to
achieve more reliable statistics of the performance indices. In consideration of the
limited available computational resources, we will focus on a small subset of the
challenging graph instances, which includes: a) four random graphs, DSJC250.5,

DSJC500.5, DSJC1000.5, and DSJC1000.9; b) two flat graphs, flat300_28_0 and
flat1000_76_0; and c) two structural Leighton graphs, le450_15c and le450_25c.

Table 4. The mean results achieved by HCA [29] and #STD.

HCA [29] #STD
Graph KS

LC NR ps Tm TR ps Tm TR rg/p Sp∆ɶ

DSJC250.5 28 2000 10 0.90 0.49 235 0.90 1.87 102 0.026 -0.0998
DSJC500.5 48 5600 10 0.50 4.90 865 0.75 9.64 210 0.019 0.0056
DSJC1000.5 84 16000 5 0.60 20.7 1283 0.94 27.5 271 0.017 0.2357
flat300_28_0 31 2000 10 0.60 0.64 790 1.00 3.31 123 0.022 0.0086
flat1000_76_0 83 16000 5 0.80 17.5 1008 0.93 28.5 286 0.017 0.0028
le450_15c 15 5600 10 0.60 0.19 24 1.00 0.14 7.91 0.172 0.5193
le450_25c 27 4000 10 1.00 0.09 18 1.00 0.49 0.31 0.003 -

Figure 2. Run-length distribution (RLD) for #STD on the graphs.

In Table 4, #STD and the hybrid coloring algorithm (HCA) [29] are compared on
the KS color series (K=84 for DSJC1000.5 and K=27 for le450_25c). HCA [29]
maintains a state set supporting a FS, i.e., GPX+Tabucol, which performs the FS only
once at each cycle. In addition, HCA can be considered as the anterior version of
AMA [31] (cf. Table 3). In HCA, the size of the state set is fixed as 10, and the LS
chain length (LC) values of Tabucol have to be adjusted for different instances. We
can use *

S S Sp p p∆ = −ɶ ɶ , where
*

* *1 (1) m mT T
S Sp p= − −ɶ , to achieve an approximate

comparison between the algorithm in <Sp , Tm> and the reference algorithm in
< *

Sp , *
mT >, under the condition that *

Sp <1. In Table 3, HCA is chosen as the reference
algorithm, and the results of the seven graphs indicate that #STD achieves positive

Sp∆ɶ values over HCA on all the graphs except for DSJC250.5 and le450_25c. The
better performance of HCA on DSJC250.5 and le450_25c might be due to the usage
of Tabucol [38]. Both DSJC250.5 and le450_25c can be solved by Tabucol, and
Tabucol is much more efficient than HCA in solving le450_25c [29].

Figure 2 gives the empirical run-length distribution (RLD) for the GCP instances
solved by #STD, where RLD provides adequate information to describe the behavior

0.1 1 10
0.0

0.2

0.4

0.6

0.8

1.0

fla
t1

00
0_

76
_0

D
S

JC
10

00
.5

D
S

JC
50

0.
5

fla
t3

00
_2

8_
0D

S
JC

25
0.

5

le
45

0_
25

cle
45

0_
15

c

P
ro

ba
bi

lit
y

of
 f

in
di

ng
 s

ol
ut

io
n

T
m
 (×106)

of an algorithm [40]. It can be seen that the steepness in every case is quite well,
where above 50% trials have achieved the optimum in a Tm within one order of
magnitude. Moreover, abrupt changes and heavy tails [36] are found in some cases,
such as le450_25c and DSJC250.5, which may result from the stagnation in certain
large benches or local minima. Such abrupt slowdowns appear in the later search
stage, which may be improved through running MAFS multiple times [36, 40].

In Table 5, #STD.L and the GPB algorithm [34] are compared on the K* color
series. Here #STD.L is defined as #STD with different NP and LI values, where each
parameter is set as a value that is not larger than that of GPB and is not less than that
of #STD. GPB [34] is a generational genetic algorithm manipulating a FS strategy,
i.e., GPX+VDS. For GPB, only NR=3 trials were run for each graph instance. In order
to evaluate each performance index of an algorithm over multiple instances, we define
a rv value for each performance index of the algorithm as follows: a) choose the
reference algorithm; b) compute the ratio of each performance index between the
algorithm and the reference algorithm for each instance; and c) calculate the
geometric mean value of all the ratios over all the instances. For ps, rv>1 is preferable;
for Tm or NX, rv<1 is preferable. The results in Table 5 show that #STD.L produces a
dominating performance over GPB. By taking GPB as the reference algorithm, the rv
values of #STD.L are rv=1.045 for ps, rv=0.227 for Tm, and rv=0.212 for NX.

Table 5. The mean results achieved by GPB [34] and #STD.L.

GPB [34] #STD.L
Graph K*

NP LI ps Tm TR NP LI ps Tm TR
DSJC250.5 28 100 100 1.00 11.7 118 100 100 1.00 6.73 81.8
DSJC500.5 48 100 500 1.00 485 686 100 500 1.00 122 172
DSJC1000.5 83 500 100 0.33 690 239 500 50 0.45 508 244
flat300_28_0 31 100 100 1.00 52.7 435 25 100 1.00 4.28 117
flat1000_76_0 83 100 200 1.00 177 305 100 50 1.00 83.2 195
le450_15c 15 100 100 1.00 1.9 11 25 100 1.00 0.16 7.74
le450_25c 26 100 500 1.00 2341 1571 25 500 1.00 211 89.1

The standard MAFS version has two main parameters, NP and LI. The larger is the

NP, the more agents the system has. The larger is the LI for a stable RLS, the more
powerful capability in finding the exits from benches the strategy has. By comparing
#STD.L and #STD, usage of large NP and/or LI has two implications for MAFS,
which, in one hand, leads to a better solution quality, as demonstrated on DSJC1000.5
and le450_25c where the K* is achieved, but in another hand, makes MFAS require
more computational cost, as shown by the other instances.

The performance of MAFS may be further enhanced through employing one of
more advanced strategies in its RLS that not only explores other local valleys but also
increases the diversity of the newly generated information [29], such as Tabucol [38],
ERA [47], Neural Network [17], Extremal Optimization [6], etc. In addition, the
knowledge components of MAFS may be further improved by utilizing certain
structural information and the related knowledge, if necessarily. For example, RT may
use the quality information in a landscape [67], and may also combine it with certain

auxiliary methods, such as a Boltzmann acceptance criteria in Simulated Annealing
[41]. Moreover, both RFS and RSP may be turned to be more intelligent by utilizing
certain population information of XSE, such as Kullback entropy [16].

5.2 Search Characteristics

Although a stable RLS cannot tackle with any kinds of ruggedness, i.e., local
minima in a landscape, it can lead to better states by finding the exits from benches
[26], where each bench is a plateau but not a local minimum in a landscape. Hence
when a stable RLS is used in MAFS, such as VDS orQT

LSR , the neutrality in a landscape
is mainly exploited by the stable RLS rule, while the ruggedness is mainly explored by
the RXS rule under the management of the multiagent framework.

Table 6 lists the results of the MAFS versions with different components in RFS,
which are applied to the KS color series. The version #LS.VD is defined by using the
VDS as the RLS. Then three MAFS versions are realized, where each uses a different
component for :

STD
XS GR : a) #GPP.E, which uses

E
GPPR for the RGPP; b) #GPP.IS, which

uses IS
GPPR for the RGPP; and c) #GVR.KF, which uses

KF
GVRR for the RGVR. Moreover, the

reference algorithm for calculating the rv values is #STD (cf. Table 4).

Table 6. The mean results by MAFS versions in different LS and XS rules.

#LS.VD #GPP.E #GPP.IS #GVR.KF
Graph KS ps Tm rg/p ps Tm ps Tm ps Tm

DSJC250.5 28 0.82 3.82 0.010 0.68 3.70 0.97 2.20 0.78 2.59
DSJC500.5 48 0.55 15.9 0.009 0.34 14.9 0.88 12.3 0.31 7.64
DSJC1000.5 84 0.56 46.1 0.008 0.35 38.5 0.96 33.4 0.25 21.2
flat300_28_0 31 0.98 5.38 0.010 0.75 6.49 1.00 4.13 0.93 2.98
flat1000_76_0 83 0.51 41.8 0.009 0.22 37.7 0.99 33.6 0.20 23.1
le450_15c 15 1.00 0.52 0.038 0.89 0.22 1.00 0.14 0.95 0.13
le450_25c 27 1.00 0.55 0.003 1.00 0.52 1.00 0.60 1.00 0.56

rv - 0.80 1.78 0.463 0.57 1.51 1.05 1.19 0.56 0.94

Local Search. The advantage of long LS chains is shown in the results by #STD.L
(cf. Table 5) and #STD (cf. Table 4), where #STD.L simply uses a larger LI value for
solving le450_25c, which is able to obtain better K than #STD does. For

QT

LSR , LI>1
simply means it walks on a plateau at the last round, since it takes stable moves for all
the unfixed vertices with its

SYS
LSRR . The advantage of the stable LS using a larger LI

value clearly indicates the significance of the search on plateaus. Moreover, it implies
that some benches are quite large, thus the local search hardly finds the exits.

By comparing the results between #LS.VD (cf. Table 6) and #STD (cf. Table 4)
which are realized under two stable RLS rules, i.e., VDS and QT

LSR , respectively, two
facts are indicated: a) most 1-moves are spent on plateaus, maybe in different levels,
according to the quite small rg/p values (<0.05) in Table 4 and 6, where each rg/p gives
the ratio of the number of greedy 1-moves (f∆ <0) over that of plateau 1-moves
(f∆ ≡ 0); and b) VDS is less efficient in the plateau search than QT

LSR , since #LS.VD
obtains worse ps and higher Tm by using a larger ratio of plateau 1-moves (according

to that rv=0.463 for rg/p). Compared with VDS,
QT

LSR uses an additional tabu matrix to
restrict the input color list

at the local level, which may forbid many unpromising

plateau moves. For LS strategies, there are three intuitive measures of effectiveness
[59]: depth, mobility, and coverage. QT

LSR with the tabu matrix may be efficient in
leading the search to a better coverage than VDS in consideration of that the depth
and mobility of both strategies are same on each plateau, where coverage measures
how systematically the search explores the entire plateau [59].

Recombination Search. The RXS rule, under the management of the multiagent
framework, plays a major role in navigating the search in a rugged landscape,
especially when a stable RLS is employed as the low-level strategy in the fusion search.
Specifically, for GCP, the grouping-based RXS rule (RXS:G) works on group sets.

The MAFS versions #GPP.E, #GPP.IS, and #STD are realized by simply using the
different RGPP rules, i.e., E

GPPR ,
IS

GPPR , and
MIS

GPPR , respectively. The results in Table 6
show that #GPP.D achieves a much worse performance while #GPP.IS achieves a
similar performance, when they are compared with #STD.

Together with E
GPPR ,

AG
GGPR simply leads to a HM in a large VHD size, and then the

RGVR rule can achieve a Hinc in the same VHD size of the HM.
Together with either

IS
GPPR or

MIS
GPPR ,

AG
GGPR leads to a stable HM in a large c-core size

(VCC). Firstly, the c-core of stable group set achieved by either IS
GPPR or

MIS
GPPR is a

superset of that by
E

GPPR . Secondly, AG
GGPR can achieve a stable HM with a larger VCC

size if the misleading information from the critical vertices on the group sizes is
excluded. Then the RGVR rule can achieve a Hinc in the same VCC size of the stable HM.

The RXS:G rule may prefer to obtain a HM in a large VCC size instead of in a large
VHD size, so as to achieve a Hinc in a large VCC size. Moreover, each parent group set
associated with a high-quality state is preferable to have a large VCC size.

Some advanced methods for improving independent sets, such as those studied in
the column generation approach [50] and lmXRLF [45], may also be used to enhance
the c-core size of a stable group set by applying to certain groups in the group set.

The MAFS versions #GVR.KF and #STD are realized by using the different RGVR
rules, i.e., KF

GVRR and
KR

GVRR , respectively. The results in Table 6 indicate that using of
KR

GVRR can achieve a better performance than
KF

GVRR . Removing a few vertices from a
group allows the group to be evolved locally through adding the new vertices
performed by the RVA rule. Although each group extracted from a high-quality state
may be rather stable, a large group is not necessarily a superset of certain proper color
class. Hence, the advantage of using the unbiased

KR
GVRR might result from that

KR
GVRR

allows all the related groups to be evolved, even the large groups.

Decentralized Interaction. Table 7 summaries the results on the KS color series by
four MAFS versions with a decentralized (,)P LN NG model at different density values,
where NL/NP values are 0.2, 0.4, 0.6, and 0.8, respectively. A larger NL value means
both a faster diffusion of the local information and a slower diffusion of the global
information. Here the reference algorithm in calculating the rv values is #STD, where
NL/NP is 1.0. Table 7 shows that the rv values of ps and Tm for each case are closed to
1 when NL/NP varies from 1.0 to 0.2, meaning the performances of these MAFS

versions are quite robust, which may be due to the good balance between the
diffusions of the local and global information in the networks.

Table 7. The results by MAFS versions for IPNET in different NL/NP values (from 0.2 to 0.8).

NL/NP=0.2 NL/NP=0.4 NL/NP=0.6 NL/NP=0.8 Graph KS ps Tm ps Tm ps Tm ps Tm
DSJC250.5 28 0.96 1.84 0.91 2.05 0.87 2.15 0.94 1.88
DSJC500.5 48 0.65 11.3 0.80 9.18 0.76 10.8 0.76 10.6
DSJC1000.5 84 0.93 27.5 0.94 26.7 0.93 28.2 0.93 28.0
flat300_28_0 31 0.99 3.32 1.00 3.00 1.00 3.31 1.00 3.21
flat1000_76_0 83 0.94 30.4 0.92 28.7 0.92 26.9 0.94 25.7
le450_15c 15 0.96 0.14 0.97 0.14 0.98 0.14 0.99 0.14
le450_25c 27 1.00 0.50 1.00 0.55 1.00 0.48 1.00 0.52

rv - 0.98 1.03 1.00 1.01 0.99 1.03 1.01 1.01

As a multiagent model, MAFS may have an advantage in the robust parallel
computing, as agents may be designed to locate at different processors in a network.
This may be useful in practice since solving large graphs is quite time-consuming.

Firstly, MAFS stores declarative knowledge by the MA of agents and distributed
the knowledge to the nodes, which make the algorithm very robust because there is
not any key node(s) in this case, meaning the nodes will not fail occasionally during a
run.. The centralized memory is a typical example of a key node, which is required by
many frameworks, such as Immune Algorithms [16], Scatter Search [37], Genetic
Algorithms [24, 34, 54], and Adaptive Memory Programming [31], etc.

Secondly, the communication of each agent is simply spent on accessing one (or a
few) state(s) memorized by other nodes during each learning cycle. Hence, the
communication cost may be neglected in comparison with the computation cost.

Thirdly, MAFS may still work well even if the interaction network is sparse, as
indicated in Table 7, MAFS possesses a robust performance in the topologies with
varied NL/NP values. In a real world, the mode of networks is often partially connected,
i.e., some connections may be invalid under certain physical network conditions.

Of course, in order to make MAFS support a communication between the agents in
the real world, more efforts must be employed on the physical infrastructure. In
addition, the current IPNET model is quite artificial, thus more experiments should be
performed to evaluate its robustness. Another two interesting issues are to analyze the
cooperative solving features of MAFS under various topologies [12], and to study if
some of the features may boost the performance. Moreover, non-uniform models [65]
such as small-world, ultrametric, power-law models, etc., including certain dynamic
topologies, may be worthy further consideration.

PAC Property. MAFS is not necessarily probabilistically approximately complete
(PAC) [39], according to the law of bounded rationality [33] it follows.

However, MAFS can achieve PAC in a simple way. Firstly, MAFS is PAC if the
RFS of any agent is PAC. Secondly, the RFS rule is PAC if: a) its RLS rule is PAC; or b)
its RXS:G rule is PAC and its RLS rule preserves the best state ever found. Thirdly, the
PAC may be also achieved by some meta RLS rules. For Example, a meta RLS rule is
PAC if it is chained by both a RLS rule in PAC and a stable RLS rule.

In fact, to find a RLS rule in PAC is no difficult. For example, it is easy to prove
that the random walk strategy (RW

LSR), i.e., < RW
LSLR , P

LSRR >, is PAC.
At each round, the probability of determining whether a vertex is moved by

RW
LSLR

is / | |RWV V , and the probability of assigning the vertex with each color by P
LSRR is

1/K. Hence the probability for assigning each vertex with each color is /(| |)RWV V K⋅ .
For any incumbent state, the probability of achieving a proper coloring is
(/(| |)RWV V K⋅)|V|, which is larger than zero since VRW>0 and both |V| and K are finite
values. Hence RW

LSR is PAC if t → ∞ according to Theorem 2 in Ref. [39], i.e., any
algorithm which, for any incumbent state, executes a random walk with a probability
of at least larger than 0 at any given time, is PAC.

6. Conclusions

In this paper, a multiagent fusion search (MAFS) is presented as a realization of a
multiagent optimization framework to solve the graph coloring problem (GCP). A
fusion search includes a recombination search (XS) working in a navigation role and a
local search (LS) in an exploitation role. In MAFS, each of agents performs the fusion
search with extremely limited knowledge in its personal declarative memory and
cooperates with others through a decentralized interaction protocol in the environment,
thus the agents are able not only to explore in parallel but also to achieve a collective
performance under the law of socially biased individual learning.

Compared with some state-of-the-art coloring algorithms, MAFS is competitive in
both the solution quality and the computational cost when applied to some hard
graphs. In addition, MAFS improves the best known results of two large graphs.

In addition, we have investigated the search characteristics of the components of
MAFS. The experimental results show that the Quasi-Tabu LS and grouping-based
XS strategies are especially useful for tackling with neutrality and ruggedness in the
GCP landscape. A simple analysis indicates that MAFS can achieve probabilistically
approximately complete in an easy way. The potential advantage of the decentralized
interaction protocol in a robust parallel computing is discussed as well.

Future research is suggested to: a) achieve a scalable performance by the agents
with adaptive strategies; b) explore certain cooperative problem solving features by
investigating the performances with real-world interaction protocols; and c) study
MAFS with suitable components to solve other hard computational problems.

References

1. Anderson, J.R.: Human symbol manipulation within an integrated cognitive architecture.
Cognitive Science 29(3): 313-341 (2005)

2. Bandura, A.: Social Learning Theory. Prentice Hall, Englewood Cliffs, NJ (1977)
3. Barbosa, V.C., Assis, C.A.G., do Nascimento, J.O.: Two novel evolutionary formulations of

the graph coloring problem. Journal of Combinatorial Optimization 8(1): 41-63 (2004)
4. Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. Annals of

Operations Research 130(1-4): 163-178 (2004)

5. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for
combinatorial global optimizations. Operation Research Letters 16: 101-113 (1994)

6. Boettcher, S., Percus, A.G.: Extremal optimization at the phase transition of the three-
coloring problem. Physical Review E 69(6): Art. 066703 (2004)

7. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, UK (1999)

8. Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM
22(4): 251-256 (1979)

9. Bui, T.N., Nguyen, T.H., Patel, C.M., Phan, K.-A.T.: An ant-based algorithm for coloring
graphs. Discrete Applied Mathematics 156(2): 190-200 (2008)

10. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
International Joint Conference on Artificial Intelligence, San Mateo, CA, 331-337 (1991)

11. Chiarandini, M.: Stochastic Local Search Methods for Highly Constrained Combinatorial
Optimisation Problems. Ph.D. thesis, Darmstadt University of Technology, Germany (2005)

12. Cioffi-Revilla, C.: Invariance and universality in social agent-based simulations. PNAS
99(suppl. 3): 7314-7316 (2002)

13. Coudert, O.: Exact coloring of real-life graphs is easy. Design Automation Conference, San
Francico, California, USA, 121-126 (1997)

14. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In [42]:
245-284 (1996)

15. Curran, D., O'Riordan, C.: Increasing population diversity through cultural learning.
Adaptive Behavior 14(4): 315-338 (2006)

16. Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm with stochastic aging and
kullback entropy for the chromatic number problem. Journal of Combinatorial Optimization
14(1): 9-33 (2007)

17. Di Blas, A., Jagota, A., Hughey, R.: Energy function-based approaches to graph coloring.
IEEE Transactions on Neural Networks 13(1): 81-91 (2002)

18. Dietterich, T.G.: Learning at the knowledge level. Machine Learning 1: 287-316 (1986)
19. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. International

Conference on Parallel Problem Solving from Nature, Amsterdam, NL, 745-754 (1998)
20. Edgington, T., Choi, B., Henson, K., Raghu, T.S., Vinze, A.: Adopting ontology to

facilitate knowledge sharing. Communications of the ACM 47(11): 85-90 (2004)
21. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. Journal of

Graph Algorithms and Applications 7(2): 131-140 (2003)
22. Erben, W.: Grouping genetic algorithm for graph colouring and exam timetabling.

International Conference on Practice and Theory of Automated Timetabling, Konstanz,
Germany, 132-156 (2000)

23. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics
2(1): 5-30 (1996)

24. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research 63: 437-464 (1996)

25. Fragaszy, D., Visalberghi, E.: Socially biased learning in monkeys. Learning & Behavior
32(1): 24-35 (2004)

26. Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: local search topology. Journal of
Artificial Intelligence Research 7: 249-281 (1997)

27. Funabiki, N., Higashino, T.: A minimal-state processing search algorithm for graph
coloring problems. IEICE Transactions on Fundamentals of Electronics Communications and
Computer Sciences E83A(7): 1420-1430 (2000)

28. Galef, B.G.: Why behaviour patterns that animals learn socially are locally adaptive.
Animal Behaviour 49(5): 1325-1334 (1995)

29. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization 3(4): 379-397 (1999)

30. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers &
Operations Research 33(9): 2547-2562 (2006)

31. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-colouring
problem. Discrete Applied Mathematics 156(2): 267-279 (2008)

32. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph coloring
for computing derivatives. SIAM Review 47(4): 629-705 (2005)

33. Gigerenzer, G., Goldstein, D.G.: Reasoning the fast and frugal way: models of bounded
rationality. Psychological Review 103(4): 650-669 (1996)

34. Glass, C.A., Prugel-Bennett, A.: Genetic algorithm for graph coloring: exploration of
Galinier and Hao's algorithm. Journal of Combinatorial Optimization 7(3): 229-236 (2003)

35. Glenberg, A.M.: What memory is for. Behavioral and Brain Sciences 20(1): 1-55 (1997)
36. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2): 43-62

(2001)
37. Hamiez, J.-P., Hao, J.-K.: Scatter search for graph coloring. International Conference on

Artificial Evolution, Le Creusot, France, 168-179 (2001)
38. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39:

345-351 (1987)
39. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT.

National Conference on Artificial Intelligence, Orlando, FL, 661-666 (1999)
40. Hoos, H.H., Stützle, T.: Evaluating Las Vegas algorithms - pitfalls and remedies.

Conference on Uncertainty in Artificial Intelligence, Madison, WI, 238-245 (1998)
41. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated

annealing: an experimental evaluation; part II, graph coloring and number partitioning.
Operations Research 39(3): 378-406 (1991)

42. Johnson, D.S., Trick, M.A., editors. Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge. American Mathematical Society, Providence, RI (1996)

43. Joslin, D.E., Clements, D.P.: "Squeaky wheel" optimization. Journal of Artificial
Intelligence Research 10: 353-373 (1999)

44. Khanna, S., Linial, N., Safra, S.: On the hardness of approximating the chromatic number.
Combinatorica 20(3): 393-415 (2000)

45. Kirovski, D.: Efficient coloring of a large spectrum of graphs. Design Automation
Conference, San Francico, California, USA, 427-432 (1998)

46. Lerman, K., Galstyan, A.: Agent memory and adaptation in multi-agent systems.
International Conference on Autonomous Agents and Multi-Agent Systems, Melbourne,
Australia, 797-803 (2003)

47. Liu, J., Han, J., Tang, Y.Y.: Multi-agent oriented constraint satisfaction. Artificial
Intelligence 136(1): 101-144 (2002)

48. Liu, J., Jin, X., Tsui, K.-C.: Autonomy Oriented Computing (AOC): From Problem Solving
to Complex Systems Modeling. Kluwer Academic Publishers, Boston, MA (2005)

49. Liu, J., Tsui, K.-C.: Toward nature-inspired computing. Communications of the ACM
49(10): 59-64 (2006)

50. Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS
Journal on Computing 8(4): 344-354 (1996)

51. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem. IEEE Transactions on Evolutionary Computation 4(4): 337-
352 (2000)

52. Mezard, M., Palassini, M., Rivoire, O.: Landscape of solutions in constraint satisfaction
problems. Physical Review Letters 95(20): Art. 200202 (2005)

53. Morgenstern, C.: Distributed coloration neighborhood search. In [42]: 335-358 (1996)
54. Mumford, C.L.: New order-based crossovers for the graph coloring problem. International

Conference on Parallel Problem Solving from Nature, Reykjavik, Iceland, 880-889 (2006)
55. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, NJ (1972)

56. Nowicki, E.: A fast tabu search algorithm for the permutation flow shop problem. European
Journal of Operational Research 91: 160-175 (1996)

57. Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking, and the flowshop sequencing
problem. Evolutionary Computation 6(1): 45-60 (1998)

58. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44(1): 3-54 (2002)
59. Schuurmans, D., Southey, F.: Local search characteristics of incomplete SAT procedures.

Artificial Intelligence 132(2): 121-150 (2001)
60. Selman, B., Kautz, H.A.: An empirical study of greedy local search for satisfiability testing.

National Conference on Artificial Intelligence, Washington DC, USA, 46-51 (1993)
61. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. National

Conference on Artificial Intelligence, Seattle, WA, 337-343 (1994)
62. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring

register allocation. ACM SIGPLAN Notices 39(6): 277-288 (2004)
63. Stone, P., Veloso, M.: Multiagent Systems: A survey from a machine learning perspective.

Autonomous Robots 8(3): 345-383 (2000)
64. Trick, M.A., Yildiz, H.: A large neighborhood search heuristic for graph coloring.

International Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, Brussels, Belgium, 346-360 (2007)

65. Walsh, T.: Search on high degree graphs. International Joint Conference on Artificial
Intelligence, Seattle, Washington, USA, 266-274 (2001)

66. Weyns, D., Holvoet, T.: On the role of environments in multiagent systems. Informatica 29:
409-421 (2005)

67. Xie, X.-F., Liu, J.: A compact multiagent system based on autonomy oriented computing.
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Compiègne,
France, 38-44 (2005)

68. Xie, X.-F., Liu, J.: How autonomy oriented computing (AOC) tackles a computationally
hard optimization problem. International Joint Conference on Autonomous Agents and
Multiagent Systems, Hakodate, Japan, 646-653 (2006)

69. Xie, X.-F., Zhang, W.-J.: SWAF: swarm algorithm framework for numerical optimization.
Genetic and Evolutionary Computation Conference, Seattle, WA, 238-250 (2004)

70. Zhang, W.: Configuration landscape analysis and backbone guided local search. Artificial
Intelligence 158(1): 1-26 (2004)

