多主体优化系统
[English version]


* 多主体优化系统 (Multiagent Optimization System, MAOS),又称多Agent优化系统,或简称MAOS系统.

在MAOS系统中,主体们(Agent)在一个环境(Environment)中进行协作搜索,用来求解能够定义为Landscape (包括一个表达空间和对其中空间状态的质量评估) 的优化问题.

MAOS可用来实现各种算法, 尤其是基于SBIL法则的群集智能和一些计算智能算法的多主体系统实现。

数值优化问题的求解算法已经包含在SWAF中, 支持粒子群优化算法 (Particle Swarm Optimization, PSO), 差分进化算法 (Differential Evolution, DE), 社会认知优化算法 (Social Cognitive Optimization, SCO), 类电磁机制算法 (Electromagnetism-like Mechanism Heuristic, EM) 等. 另外它的简化版本, 包括 Mini-Swarm系统,已经用于旅行商问题 (Traveling Saleman Problem, TSP), 二次背包问题 (Quadratic Knapsack Problem, QKP), 图着色问题 (Graph Coloring Problem, GCP), Flow-Shop Scheduling Problem (FSP), Quadratic Assignment Problem (QAP) 等组合优化问题.

另外, 它也允许在元行为的基础上实现各种宏行为。一个典型的应用背景为实现各种混合算法, 比如DEPSO混合算法即为DE和PSO的混合.

Related Papers

  • Xiao-Feng Xie. Round-table group optimization for sequencing problems. International Journal of Applied Metaheuristic Computing, 2012, 3(4): 1-24. [DOI]
  • Xiao-Feng Xie, Jiming Liu. Multiagent optimization system for solving the traveling salesman problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(2): 489-502. [DOI]
  • Xiao-Feng Xie, Jiming Liu. Graph coloring by multiagent fusion search. Journal of Combinatorial Optimization, 2009, 18(2): 99-123. [DOI]
  • Xiao-Feng Xie, Jiming Liu. A mini-swarm for the quadratic knapsack problem. IEEE Swarm Intelligence Symposium (SIS), Honolulu, HI, USA, 2007: 190-197. [DOI]
  • Xiao-Feng Xie, Jiming Liu. How autonomy oriented computing (AOC) tackles a computationally hard optimization problem. International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Hakodate, Japan, 2006: 646-653. [DOI]
  • Xiao-Feng Xie, Jiming Liu. A compact multiagent system based on autonomy oriented computing, IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT), Compiégne, France, 2005: 38-44 [DOI]
  • Xiao-Feng Xie, Wen-Jun Zhang. SWAF: swarm algorithm framework for numerical optimization. Genetic and Evolutionary Computation Conference (GECCO), LNCS 3102, Seattle, WA, USA, 2004: 238-250. [SpringerLink]

  • Return to homepage

    Maintained by AdaptiveBox StUdIo, under a Creative Commons Attribution 3.0 License.